Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

251. Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A $$C$$ is empty
B $$B$$  has as many elements as $$C$$
C $$A = B \cup C$$
D $$B$$  has twice as many elements as elements as $$C$$
Answer :   $$B$$  has as many elements as $$C$$

252. Let $$a, b, c$$  be such that $$b\left( {a + c} \right) \ne 0$$   if \[\left| \begin{array}{l} \,\,a\,\,\,\,\,\,\,\,\,a + 1\,\,\,\,\,\,\,\,\,a - 1\\ - b\,\,\,\,\,\,\,\,b + 1\,\,\,\,\,\,\,\,\,b - 1\\ \,\,c\,\,\,\,\,\,\,\,\,c - 1\,\,\,\,\,\,\,\,\,\,c + 1 \end{array} \right| + \left| \begin{array}{l} \,\,\,\,\,a + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c - 1\\ \,\,\,\,\,a - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c + 1\\ {\left( { - 1} \right)^{n + 2}}a\,\,\,\,\,\,\,\,{\left( { - 1} \right)^{n + 1}}b\,\,\,\,\,\,\,\,\,{\left( { - 1} \right)^n}c \end{array} \right| = 0,\]            then the value of $$n$$ is:

A any even integer
B any odd integer
C any integer
D zero
Answer :   any odd integer

253. Consider three points $$P = \left( { - \sin \left( {\beta - \alpha } \right), - \cos \beta } \right),$$      $$Q = \left( {\cos \left( {\beta - \alpha } \right),\sin \beta } \right)\,{\text{and}}$$      $$R = \left( {\cos \left( {\beta - \alpha + \theta } \right),\sin \left( {\beta - \theta } \right)} \right),$$       where $$0 < \alpha ,\beta ,\theta < \frac{\pi }{4}.$$    Then

A $$P$$ lies on the line segment $$RQ$$
B $$Q$$ lies on the line segment $$PR$$
C $$R$$ lies on the line segment $$QP$$
D $$P, Q, R$$   are non - collinear
Answer :   $$P, Q, R$$   are non - collinear

254. If $$\alpha ,\beta $$  are non-real numbers satisfying $${x^3} - 1 = 0$$   then the value of \[\left| {\begin{array}{*{20}{c}} {\lambda + 1}&\alpha &\beta \\ \alpha &{\lambda + \beta }&1 \\ \beta &1&{\lambda + \alpha } \end{array}} \right|\]     is equal to

A $$0$$
B $${\lambda ^3}$$
C $${\lambda ^3} + 1$$
D None of these
Answer :   $${\lambda ^3}$$

255. Let \[A = \left( \begin{array}{l} 1\,\,\,\,\,\,2\\ 3\,\,\,\,\,4 \end{array} \right){\rm{and }}\,\,B = \left( \begin{array}{l} a\,\,\,\,\,\,0\\ 0\,\,\,\,\,\,b \end{array} \right),a,b \in N.\]        Then

A there cannot exist any $$B$$ such that $$AB = BA$$
B there exist more then one but finite number of $$B’s$$  such that $$AB = BA$$
C there exists exactly one $$B$$ such that $$AB = BA$$
D there exist infinitely many $$B’s$$  such that $$AB = BA$$
Answer :   there exist infinitely many $$B’s$$  such that $$AB = BA$$

256. Let $$k$$ be an integer such that triangle with vertices $$(k, -3k), (5, k)$$   and $$(- k, 2)$$  has area $$28\,sq.$$  units. Then the orthocentre of this triangle is at the point:

A $$\left( {2,\frac{1}{2}} \right)$$
B $$\left( {2, - \frac{1}{2}} \right)$$
C $$\left( {1,\frac{3}{4}} \right)$$
D $$\left( {1, - \frac{3}{4}} \right)$$
Answer :   $$\left( {2,\frac{1}{2}} \right)$$

257. If $${A^2} = 8A + kI$$   where \[A = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 1}&7 \end{array}} \right]\]   then $$k$$ is

A $$7$$
B $$- 7$$
C $$1$$
D $$ - 1$$
Answer :   $$- 7$$

258. If \[A = \left[ \begin{array}{l} \cos \theta \,\,\,\,\,\,\,\, - \sin \theta \\ \sin \theta \,\,\,\,\,\,\,\,\,\,\,\,\cos \theta \end{array} \right],\]     then the matrix $${A^{ - 50}}$$  when $$\theta = \frac{\pi }{{12}},$$   is equal to:

A \[\left[ \begin{array}{l} \,\frac{1}{2}\,\,\,\,\,\,\,\,\,\, - \frac{{\sqrt 3 }}{2}\\ \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \end{array} \right]\]
B \[\left[ \begin{array}{l} \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\, - \frac{1}{2}\\ \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]
C \[\left[ \begin{array}{l} \,\,\,\frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]
D \[\left[ \begin{array}{l} \,\,\,\,\,\frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2}\\ - \frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2} \end{array} \right]\]
Answer :   \[\left[ \begin{array}{l} \,\,\,\frac{{\sqrt 3 }}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{1}{2}\\ - \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\frac{{\sqrt 3 }}{2} \end{array} \right]\]

259. If $$A$$ is a $$3 \times 3$$  non - singular matrix such that $$AA' = A'A$$   and $$B = {A^{ - 1}}A',$$   then $$BB'$$  equals:

A $${B^{ - 1}}$$
B $$\left( {{B^{ - 1}}} \right)'$$
C $$I + B$$
D $$I$$
Answer :   $$I$$

260. If the equations $$a\left( {y + z} \right) = x,b\left( {z + x} \right) = y$$      and $$c\left( {x + y} \right) = z,$$   where $$a \ne - 1,b \ne - 1,c \ne - 1,$$     admit of non-trivial solutions then $${\left( {1 + a} \right)^{ - 1}} + {\left( {1 + b} \right)^{ - 1}} + {\left( {1 + c} \right)^{ - 1}}$$       is

A $$2$$
B $$1$$
C $$\frac{1}{2}$$
D None of these
Answer :   $$2$$