Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The system of equations
$$\eqalign{ & 2x - y + z = 0 \cr & x - 2y + z = 0 \cr & \lambda x - y + 2z = 0 \cr} $$
has infinite number of nontrivial solutions for

A $$\lambda = 1$$
B $$\lambda = 5$$
C $$\lambda = - 5$$
D no real value of $$\lambda $$
Answer :   $$\lambda = 5$$

52. Let $$A$$ be a square matrix all of whose entries are integers. Then which one of the following is true?

A If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are not necessarily integers
B If det $$A \ne \pm 1,$$  then $${A^{ - 1}}$$ exists and all its entries are non integers
C If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are integers
D If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ need not exists
Answer :   If det $$A = \pm 1,$$  then $${A^{ - 1}}$$ exists but all its entries are integers

53. Let $$A, B , C, D$$   be (not necessarily square) real matrices such that $$A^T = BCD; B^T = CDA; C^T = DAB$$        and $$DT = ABC$$   for the matrix $$S = ABCD, S^3 =$$

A $$I$$
B $$S^2$$
C $$S$$
D $$O$$
Answer :   $$S$$

54. If \[A = \left[ {\begin{array}{*{20}{c}} 1&2&{ - 1}\\ { - 1}&1&2\\ 2&{ - 1}&1 \end{array}} \right],\]     then $$\det\left( {adj\left( {adj\,A} \right)} \right)$$    is

A $${\left( {14} \right)^4}$$
B $${\left( {14} \right)^3}$$
C $${\left( {14} \right)^2}$$
D $${\left( {14} \right)^1}$$
Answer :   $${\left( {14} \right)^4}$$

55. The matrix \[A = \left[ {\begin{array}{*{20}{c}} { - 5}&{ - 8}&0\\ 3&5&0\\ 1&2&{ - 1} \end{array}} \right]\]

A idempotent matrix
B involutory matrix
C nilpotent matrix
D None of these
Answer :   involutory matrix

56. Consider the system of linear equations;
$$\eqalign{ & {x_1} + 2{x_2} + {x_3} = 3 \cr & 2{x_1} + 3{x_2} + {x_3} = 3 \cr & 3{x_1} + 5{x_2} + 2{x_3} = 1 \cr} $$
The system has

A exactly 3 solutions
B a unique solution
C no solution
D infinite number of solutions
Answer :   no solution

57. For what value of $$p,$$ is the system of equations :
$$\eqalign{ & {p^3}x + {\left( {p + 1} \right)^3}y = {\left( {p + 2} \right)^3} \cr & px + \left( {p + 1} \right)y = p + 2 \cr & x + y = 1 \cr} $$
Consistent ?

A $$p = 0$$
B $$p = 1$$
C $$p = - 1$$
D For all $$p > 1$$
Answer :   $$p = - 1$$

58. In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then it can be decomposed into $$n$$ determinants, where $$n$$ has the value

A 1
B 9
C 16
D 24
Answer :   24

59. Let $$\lambda $$ and $$\alpha $$ be real. The set of all values of $$x$$ for which the system of linear equations
$$\eqalign{ & \lambda x + \left( {\sin \alpha } \right)y + \left( {\cos \alpha } \right)z = 0 \cr & x + \left( {\cos \alpha } \right)y + \left( {\sin \alpha } \right)z = 0 \cr & - x + \left( {\sin \alpha } \right) - \left( {\cos \alpha } \right)z = 0 \cr} $$
has a non-trivial solution, is

A $$\left[ {0,\sqrt 2 } \right]$$
B $$\left[ { - \sqrt 2 , 0 } \right]$$
C $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$
D None of these
Answer :   $$\left[ { - \sqrt 2 ,\sqrt 2 } \right]$$

60. The rank of the matrix \[\left[ {\begin{array}{*{20}{c}} 4&1&0&0 \\ 3&0&1&0 \\ 5&0&0&1 \end{array}} \right]\]   is

A 4
B 3
C 2
D None of these
Answer :   3