Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
For what values of $$k,$$ does the system of linear equation $$x + y + z = 2, 2x + y – z = 3, 3x + 2y + kz = 4$$ have a unique solution ?
A
$$k = 0$$
B
$$ - 1 < k < 1$$
C
$$- 2 < k < 2$$
D
$$k \ne 0$$
Answer :
$$k \ne 0$$
The given system of equations is
$$\eqalign{
& x + y + z = 2{\text{ }}\,\,\,.....\left( {\text{i}} \right) \cr
& 2x + y - z = 3{\text{ }}\,\,\,\,.....\left( {{\text{ii}}} \right) \cr
& {\text{and }}\,3x + 2y + kz = 4\,\,\,.....\left( {{\text{iii}}} \right) \cr} $$
This system has a unique solution if
\[\left| {\begin{array}{*{20}{c}}
1&1&1\\
2&1&{ - 1}\\
3&2&k
\end{array}} \right| \ne 0\]
Applying, $${C_2} \to {C_2} - {C_1}\,\,{\text{and }}{C_3} \to {C_3} - {C_1}$$
We get, \[\left| {\begin{array}{*{20}{c}}
1&0&0\\
3&{ - 1}&{ - 3}\\
3&{ - 1}&{k - 3}
\end{array}} \right| \ne 0\]
$$\eqalign{
& \Rightarrow - 1\left( {k - 3} \right) - 3 \ne 0{\text{ or }} - k + 3 - 3 \ne 0 \cr
& \Rightarrow k \ne 0 \cr} $$
62.
If the system of equations $$x + ay = 0, az + y = 0$$ and $$ax + z = 0$$ has infinite solutions, then the value of $$a$$ is
A
$$- 1$$
B
1
C
0
D
no real values
Answer :
$$- 1$$
The given system is, $$x + ay = 0$$
$$az + y = 0$$
$$ax + z = 0$$
It is system of homogeneous equations therefore, it will have infinite many solutions if determinant of co-efficient matrix is zero. i.e.,
\[\left| \begin{array}{l}
1\,\,\,\,\,\,\,a\,\,\,\,\,\,\,0\\
0\,\,\,\,\,\,\,1\,\,\,\,\,\,\,a\\
a\,\,\,\,\,\,\,0\,\,\,\,\,\,\,1
\end{array} \right| = 0\]
$$\eqalign{
& \Rightarrow \,\,1\left( {1 - 0} \right) - a\left( {0 - {a^2}} \right) = 0 \cr
& \Rightarrow \,\,1 + {a^3} = 0 \cr
& \Rightarrow \,\,{a^3} = - 1 \cr
& \Rightarrow \,\,a = - 1 \cr} $$
63.
If $${a^2} + {b^2} + {c^2} = - 2\,{\text{and}}$$ \[f\left( x \right) = \left| \begin{array}{l}
\,\,\,1 + {a^2}x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {1 + {b^2}} \right)x\,\,\,\,\,\,\,\left( {1 + {c^2}} \right)x\\
\left( {1 + {a^2}} \right)x\,\,\,\,\,\,\,\,\,\,\,\,1 + {b^2}x\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {1 + {c^2}} \right)x\\
\left( {1 + {a^2}} \right)x\,\,\,\,\,\,\,\,\,\left( {1 + {b^2}} \right)x\,\,\,\,\,\,\,\,\,\,\,1 + {c^2}x
\end{array} \right|,\] then $$f\left( x \right)$$ is a polynomial of degree
66.
Let \[f\left( x \right) = \left| {\begin{array}{*{20}{c}}
n&{n + 1}&{n + 2}\\
{{\,^n}{P_n}}&{^{n + 1}{P_{n + 1}}}&{^{n + 2}{P_{n + 2}}}\\
{{\,^n}{C_n}}&{^{n + 1}{C_{n + 1}}}&{^{n + 2}{C_{n + 2}}}
\end{array}} \right|,\] where the symbols have their usual meanings. The $$f\left( x \right)$$ is divisible by
67.
The arbitrary constant on which the value of the determinant \[\left| {\begin{array}{*{20}{c}}
1&\alpha &{{\alpha ^2}} \\
{\cos \left( {p - d} \right)a}&{\cos pa}&{\cos \left( {p - d} \right)a} \\
{\sin \left( {p - d} \right)a}&{\sin pa}&{\sin \left( {p - d} \right)a}
\end{array}} \right|\] does not depend is
68.
Let $$P$$ and $$Q$$ be $$3 \times 3$$ matrices $$P \ne Q.$$ If $${P^3} = {Q^3}$$ and $${P^2}Q = {Q^2}P$$ then determinant of $$\left( {{P^2} + {Q^2}} \right)$$ is equal to: