Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

61. For what values of $$k,$$ does the system of linear equation $$x + y + z = 2, 2x + y – z = 3, 3x + 2y + kz = 4$$          have a unique solution ?

A $$k = 0$$
B $$ - 1 < k < 1$$
C $$- 2 < k < 2$$
D $$k \ne 0$$
Answer :   $$k \ne 0$$

62. If the system of equations $$x + ay = 0, az + y = 0$$     and $$ax + z = 0$$   has infinite solutions, then the value of $$a$$ is

A $$- 1$$
B 1
C 0
D no real values
Answer :   $$- 1$$

63. If $${a^2} + {b^2} + {c^2} = - 2\,{\text{and}}$$     \[f\left( x \right) = \left| \begin{array}{l} \,\,\,1 + {a^2}x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {1 + {b^2}} \right)x\,\,\,\,\,\,\,\left( {1 + {c^2}} \right)x\\ \left( {1 + {a^2}} \right)x\,\,\,\,\,\,\,\,\,\,\,\,1 + {b^2}x\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {1 + {c^2}} \right)x\\ \left( {1 + {a^2}} \right)x\,\,\,\,\,\,\,\,\,\left( {1 + {b^2}} \right)x\,\,\,\,\,\,\,\,\,\,\,1 + {c^2}x \end{array} \right|,\]          then $$f\left( x \right)$$ is a polynomial of degree

A 1
B 0
C 3
D 2
Answer :   2

64. If a matrix $$A$$ is such that $$3{A^3} + 2{A^2} + 5A + I = 0.$$     Then what is $$A^{–1}$$ equal to ?

A $$ - \left( {3{A^2} + 2A + 5I} \right)$$
B $$3A^2 + 2A + 5I$$
C $$3A^2 – 2A – 5I$$
D $$ \left( {3{A^2} + 2A - 5I} \right)$$
Answer :   $$ - \left( {3{A^2} + 2A + 5I} \right)$$

65. If \[A = \left[ {\begin{array}{*{20}{c}} a&0&0\\ 0&a&0\\ 0&0&a \end{array}} \right],\]    then the value of $$\left| {adj\,A} \right|$$   is

A $$a^{27}$$
B $$a^{9}$$
C $$a^{6}$$
D $$a^{2}$$
Answer :   $$a^{6}$$

66. Let \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} n&{n + 1}&{n + 2}\\ {{\,^n}{P_n}}&{^{n + 1}{P_{n + 1}}}&{^{n + 2}{P_{n + 2}}}\\ {{\,^n}{C_n}}&{^{n + 1}{C_{n + 1}}}&{^{n + 2}{C_{n + 2}}} \end{array}} \right|,\]       where the symbols have their usual meanings. The $$f\left( x \right)$$  is divisible by

A $${{n^2} + n + 1}$$
B $$\left( {n + 1} \right)!$$
C $$\left( {2n + 1} \right)!$$
D None of the above
Answer :   $${{n^2} + n + 1}$$

67. The arbitrary constant on which the value of the determinant \[\left| {\begin{array}{*{20}{c}} 1&\alpha &{{\alpha ^2}} \\ {\cos \left( {p - d} \right)a}&{\cos pa}&{\cos \left( {p - d} \right)a} \\ {\sin \left( {p - d} \right)a}&{\sin pa}&{\sin \left( {p - d} \right)a} \end{array}} \right|\]       does not depend is

A $$\alpha $$
B $$p$$
C $$d$$
D $$a$$
Answer :   $$p$$

68. Let $$P$$ and $$Q$$ be $$3 \times 3$$  matrices $$P \ne Q.$$  If $${P^3} = {Q^3}$$  and $${P^2}Q = {Q^2}P$$   then determinant of $$\left( {{P^2} + {Q^2}} \right)$$  is equal to:

A $$- 2$$
B $$1$$
C $$0$$
D $$- 1$$
Answer :   $$0$$

69. If \[{\vartriangle _1} = \left| {\begin{array}{*{20}{c}} 7&x&2 \\ { - 5}&{x + 1}&3 \\ 4&x&7 \end{array}} \right|,{\vartriangle _2} = \left| {\begin{array}{*{20}{c}} x&2&7 \\ {x + 1}&3&{ - 5} \\ x&7&4 \end{array}} \right|\]         then $${\vartriangle _1} - {\vartriangle _2} = 0$$   for

A $$x = 2$$
B all real $$x$$
C $$x = 0$$
D None of these
Answer :   all real $$x$$

70. Let \[A = \left| \begin{array}{l} 5\,\,\,\,\,\,\,\,5\alpha \,\,\,\,\,\,\,\,\alpha \\ 0\,\,\,\,\,\,\,\,\,\alpha \,\,\,\,\,\,\,\,5\alpha \\ 0\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,5 \end{array} \right|.\]    If $$\left| {{A^2}} \right| = 25,$$  then $$\left| \alpha \right|$$ equals

A $$\frac{1}{5}$$
B 5
C $${{5^2}}$$
D 1
Answer :   $$\frac{1}{5}$$