Quadratic Equation MCQ Questions & Answers in Algebra | Maths

Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

111. If $$x, y$$  are rational numbers such that $$x + y + \left( {x - 2y} \right)\sqrt 2 = 2x - y + \left( {x - y - 1} \right)\sqrt 6 $$          then

A $$x$$ and $$y$$ cannot be determined
B $$x = 2, y = 1$$
C $$x = 5, y = 1$$
D none of these
Answer :   $$x = 2, y = 1$$

112. The equation whose roots are the $$n^{th}$$ power of the roots of the equation $${x^2} - 2x\cos \theta + 1 = 0$$     is given by

A $${x^2} + 2x\cos n\theta + 1 = 0$$
B $${x^2} - 2x\cos n\theta + 1 = 0$$
C $${x^2} - 2x\sin n\theta + 1 = 0$$
D $${x^2} + 2x\sin n\theta + 1 = 0$$
Answer :   $${x^2} - 2x\cos n\theta + 1 = 0$$

113. If $$\left( {{x^2} + px + 1} \right)$$   is a factor of $$\left( {a{x^3} + bx + c} \right),$$    then

A $${a^2} + {c^2} = - ab$$
B $${a^2} - {c^2} = - ab$$
C $${a^2} - {c^2} = ab$$
D none of these
Answer :   $${a^2} - {c^2} = ab$$

114. If one root of the equation $$\left( {l - m} \right){x^2} + lx + 1 = 0$$     is double the other and $$l$$ is real, then what is the greatest value of $$m ?$$

A $$ - \frac{9}{8}$$
B $$ \frac{9}{8}$$
C $$ - \frac{8}{9}$$
D $$ \frac{8}{9}$$
Answer :   $$ \frac{9}{8}$$

115. If the roots of $${a_1}{x^2} + {b_1}x + {c_1} = 0$$     are $${\alpha _1},{\beta _1},$$  and those of $${a_2}{x^2} + {b_2}x + {c_2} = 0$$     are $${\alpha _2},{\beta _2}$$  such that $${\alpha _1}{\alpha _2} = {\beta _1}{\beta _2} = 1$$    then

A $$\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}$$
B $$\frac{{{a_1}}}{{{c_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{a_2}}}$$
C $${a_1}{a_2} = {b_1}{b_2} = {c_1}{c_2}$$
D None of these
Answer :   $$\frac{{{a_1}}}{{{c_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{a_2}}}$$

116. The number of values of the pair $$(a, b)$$  for which $$a{\left( {x + 1} \right)^2} + b\left( {{x^2} - 3x - 2} \right) + x + 1 = 0$$         is an identity in $$x$$ is

A 0
B 1
C 2
D infinite
Answer :   0

117. If both the roots of $$k\left( {6{x^2} + 3} \right) + rx + 2{x^2} - 1 = 0$$       and $$6k\left( {2{x^2} + 1} \right) + px + 4{x^2} - 2 = 0$$       are common, then $$2r - p$$  is equal to

A $$- 1$$
B $$0$$
C $$1$$
D $$2$$
Answer :   $$0$$

118. If $$p$$ and $$q$$ are the roots of the equation $${x^2} + px + q = 0,$$    then

A $$p = 1, q = - 2$$
B $$p = 0, q = 1$$
C $$p = - 2, q = 0$$
D $$p = - 2, q = 1$$
Answer :   $$p = 1, q = - 2$$

119. If $$x \in Z$$  (the set of integers) such that $${x^2} - 3x < 4$$   then the number of possible values of $$x$$ is

A 3
B 4
C 6
D None of these
Answer :   4

120. If the roots of $$a{x^2} - bx - c = 0$$    change by the same quantity then the expression in $$a, b, c$$  that does not change is

A $$\frac{{{b^2} - 4ac}}{{{a^2}}}$$
B $$\frac{{{b} - 4c}}{{{a}}}$$
C $$\frac{{{b^2} + 4ac}}{{{a^2}}}$$
D None of these
Answer :   $$\frac{{{b^2} + 4ac}}{{{a^2}}}$$