Quadratic Equation MCQ Questions & Answers in Algebra | Maths

Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

121. The number of values of $$a$$ for which $$\left( {{a^2} - 3a + 2} \right){x^2} + \left( {{a^2} - 5a + 6} \right)x + {a^2} - 4 = 0$$          is an identity in $$x$$ is

A 0
B 2
C 1
D 3
Answer :   1

122. If $$a \cdot {3^{\tan x}} + a \cdot {3^{ - \tan x}} - 2 = 0$$      has real solutions, $$x \ne \frac{\pi }{2},0 \leqslant x \leqslant \pi ,$$    then the set of possible values of the parameter $$a$$ is

A $$\left[ { - 1,1} \right]$$
B $$\left[ { - 1,0} \right)$$
C $$\left( {0,1} \right]$$
D $$\left( {0, + \infty } \right)$$
Answer :   $$\left( {0,1} \right]$$

123. Consider $$f\left( x \right) = {x^2} - 3x + a + \frac{1}{a},a \in R - \left\{ 0 \right\},$$        such that $$f\left( 3 \right) > 0$$  and $$f\left( 2 \right) \leqslant 0.$$  If $$\alpha $$ and $$\beta $$ are the roots of equation $$f\left( x \right) = 0 $$   then the value of $${\alpha ^2} + {\beta ^2}$$  is equal to

A greater than 11
B less than 5
C 5
D depends upon $$a$$ and $$a$$ cannot be determined
Answer :   5

124. Let $$x + \frac{1}{x} = 1$$   and $$a, b$$  and $$c$$ are distinct positive integers such that $$\left( {{x^a} + \frac{1}{{{x^a}}}} \right) + \left( {{x^b} + \frac{1}{{{x^b}}}} \right) + \left( {{x^c} + \frac{1}{{{x^c}}}} \right) = 0.$$         Then the minimum value of $$\left( {a + b + c} \right)$$   is

A 7
B 8
C 9
D 10
Answer :   9

125. If $${\log _{10}}x + {\log _{10}}y \geqslant 2$$     then the smallest possible value of $$x + y$$  is

A 10
B 30
C 20
D None of these
Answer :   20

126. If $$\alpha ,\beta $$  are real and $${\alpha ^2},{\beta ^2}$$  are the roots of the equation $${a^2}{x^2} - x + 1 - {a^2} = 0\left( {\frac{1}{{\sqrt 2 }} < a < 1} \right)$$       and $${\beta ^2} \ne 1,{\text{then }}{\beta ^2} = $$

A $$a^2$$
B $$\frac{{1 - {a^2}}}{{{a^2}}}$$
C $${1 - {a^2}}$$
D $${1 + {a^2}}$$
Answer :   $$\frac{{1 - {a^2}}}{{{a^2}}}$$

127. If the roots of the equation $${x^2} - 2ax + {a^2} + a - 3 = 0$$      are real and less than 3, then

A $$a < 2$$
B $$2 \leqslant a \leqslant 3$$
C $$3 < a \leqslant 4$$
D $$a > 4$$
Answer :   $$a < 2$$

128. Let $$ - \frac{\pi }{6} < \theta < - \frac{\pi }{{12}}.$$    Suppose $${\alpha _1}$$ and $${\beta _1}$$ are the roots of the equation $${x^2} - 2x\sec \alpha + 1 = 0$$     and $$\,{\alpha _2}$$  and $${\beta _2}$$ are the roots of the equation $${x^2} + 2x\tan \theta - 1 = 0.\,$$    If $${\alpha _1}\, > {\beta _1}$$  and $${\alpha _2}\, > {\beta _2}$$  then $$\,{\alpha _1}\, + {\beta _2}$$  equals

A $$2\left( {\sec \theta - \tan \theta } \right)$$
B $$2\sec \theta $$
C $$ - 2\tan \theta $$
D 0
Answer :   $$ - 2\tan \theta $$

129. The equation $$x - \frac{2}{{x - 1}} = 1 - \frac{2}{{x - 1}}\,$$     has

A no root
B one root
C two equal roots
D infinitely many roots
Answer :   no root

130. The least value of the expression $$2\,{\log _{10}}x - {\log _x}\left( {0.01} \right),$$     for $$x > 1,$$  is

A 10
B 2
C $$- 0.01$$
D none of these
Answer :   2