Quadratic Equation MCQ Questions & Answers in Algebra | Maths

Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If $$\alpha \,\,{\text{and }}\beta $$   are the roots of the equation $${x^2} - x + 1 = 0,\,{\text{then }}{\alpha ^{2009}} + {\beta ^{2009}} = $$

A $$- 1$$
B $$1$$
C $$2$$
D $$- 2$$
Answer :   $$1$$

142. The roots of the equation $${x^3} + 14{x^2} - 84x - 216 = 0$$      are in

A A.P.
B G.P.
C H.P.
D None of these
Answer :   G.P.

143. The set of real values of $$x$$ satisfying $$\left| {\left| {x - 1} \right| - 1} \right| \leqslant 1$$    is

A $$\left[ { - 1,3} \right]$$
B $$\left[ {0,2} \right]$$
C $$\left[ { - 1,1} \right]$$
D None of these
Answer :   $$\left[ { - 1,3} \right]$$

144. If the roots of the equation $$x^2 – ax + b = 0$$    are real and differ by a quantity which is less than $$c(c > 0),$$  then $$b$$ lies between

A $$\frac{{{a^2} - {c^2}}}{4}{\text{and}}\frac{{{a^2}}}{4}$$
B $$\frac{{{a^2} + {c^2}}}{4}{\text{and}}\frac{{{a^2}}}{4}$$
C $$\frac{{{a^2} - {c^2}}}{2}{\text{and}}\frac{{{a^2}}}{4}$$
D None of these
Answer :   $$\frac{{{a^2} - {c^2}}}{4}{\text{and}}\frac{{{a^2}}}{4}$$

145. The line $$y + 14 = 0$$   cuts the curve whose equation is $$x\left( {{x^2} + x + 1} \right) + y = 0$$     at

A three real points
B one real point
C at least one real point
D no real point
Answer :   one real point

146. The solution set of $$\left| {\frac{{x + 1}}{x}} \right| + \left| {x + 1} \right| = \frac{{{{\left( {x + 1} \right)}^2}}}{{\left| x \right|}}$$      is

A $$\left\{ {x\left| {x \geqslant 0} \right.} \right\}$$
B $$\left\{ {x\left| {x > 0} \right.} \right\} \cup \left\{ { - 1} \right\}$$
C $$\left\{ { - 1,1} \right\}$$
D $$\left\{ {x\left| {x \geqslant 1} \right.\,\,{\text{or, }}x \leqslant - 1} \right\}$$
Answer :   $$\left\{ {x\left| {x > 0} \right.} \right\} \cup \left\{ { - 1} \right\}$$

147. Let $$p,q \in R.\,\,{\text{If }}\,{\text{2}} - \sqrt 3 $$     is a root of the quadratic equation, $${x^2} + px + q = 0,$$    then;

A $${p^2} - 4q + 12 = 0$$
B $${q^2} - 4p - 16 = 0$$
C $${q^2} + 4p + 14 = 0$$
D $${p^2} - 4q - 12 = 0$$
Answer :   $${p^2} - 4q - 12 = 0$$

148. If $${\left( {\sqrt 2 } \right)^x} + {\left( {\sqrt 3 } \right)^x} = {\left( {\sqrt {13} } \right)^{\frac{x}{2}}}$$     then the number of values of $$x$$ is

A $$2$$
B $$4$$
C $$1$$
D none of these
Answer :   $$1$$

149. If $${\log _{0.3}}\left( {x - 1} \right) < {\log _{0.09}}\left( {x - 1} \right),$$      then $$x$$ lies in the interval-

A $$\left( {2,\infty } \right)$$
B $$\left( {1,2} \right)$$
C $$\left( { - 2, - 1} \right)$$
D none of these
Answer :   $$\left( {2,\infty } \right)$$

150. If $${3^{\frac{x}{2}}} + {2^x} > 25$$   then the solution set is

A $$R$$
B $$\left( {2, + \infty } \right)$$
C $$\left( {4, + \infty } \right)$$
D None of these
Answer :   $$\left( {4, + \infty } \right)$$