146.
The solution set of $$\left| {\frac{{x + 1}}{x}} \right| + \left| {x + 1} \right| = \frac{{{{\left( {x + 1} \right)}^2}}}{{\left| x \right|}}$$ is
A
$$\left\{ {x\left| {x \geqslant 0} \right.} \right\}$$
147.
Let $$p,q \in R.\,\,{\text{If }}\,{\text{2}} - \sqrt 3 $$ is a root of the quadratic equation, $${x^2} + px + q = 0,$$ then;
A
$${p^2} - 4q + 12 = 0$$
B
$${q^2} - 4p - 16 = 0$$
C
$${q^2} + 4p + 14 = 0$$
D
$${p^2} - 4q - 12 = 0$$
Answer :
$${p^2} - 4q - 12 = 0$$
Since $$\,2 - \sqrt 3 $$ is a root of the quadratic equation
$${x^2} + px + q = 0$$
$$\therefore \,\,2 + \sqrt 3 \,$$ is the root of unity
⇒ Sum of roots = 4, Product of roots = 1
$$\eqalign{
& \Rightarrow \,p = - 4,q = 1 \cr
& \Rightarrow \,{p^2} - 4q - 12 \cr
& = 16 - 4 - 12 \cr
& = 0 \cr} $$
148.
If $${\left( {\sqrt 2 } \right)^x} + {\left( {\sqrt 3 } \right)^x} = {\left( {\sqrt {13} } \right)^{\frac{x}{2}}}$$ then the number of values of $$x$$ is
A
$$2$$
B
$$4$$
C
$$1$$
D
none of these
Answer :
$$1$$
$$\eqalign{
& {2^{\frac{x}{2}}} + {3^{\frac{x}{2}}} = {\left( {\sqrt {13} } \right)^{\frac{x}{2}}} \cr
& \Rightarrow \,\,{\left( {\frac{2}{{\sqrt {13} }}} \right)^{\frac{x}{2}}} + {\left( {\frac{3}{{\sqrt {13} }}} \right)^{\frac{x}{2}}} = 1 \cr} $$
which is of the form $${\cos ^{\frac{x}{2}}}\alpha + {\sin ^{\frac{x}{2}}}\alpha = 1.$$
$$\therefore \,\,\frac{x}{2} = 2.$$
149.
If $${\log _{0.3}}\left( {x - 1} \right) < {\log _{0.09}}\left( {x - 1} \right),$$ then $$x$$ lies in the interval-