Quadratic Equation MCQ Questions & Answers in Algebra | Maths
Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
191.
Let $$\alpha \,\,{\text{and }}\beta $$ be the roots $${x^2} - 6x - 2 = 0,\,{\text{with }}\alpha > \beta .$$ If $${a_n} = {\alpha ^n} - {\beta ^n}\,\,{\text{for }}n \geqslant 1,$$ then the value of $$\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}\,\,{\text{is}}$$
192.
Let $$a, b, c$$ be real numbers and $$a \ne 0.$$ If $$\alpha $$ is a root of $${a^2}{x^2} + bx + c = 0,\beta $$ is a root of $${a^2}{x^2} - bx - c = 0,$$ and $$0 < \alpha < \beta $$ then the equation $${a^2}{x^2} + 2bx + 2c = 0$$ has a root $$\gamma $$ that always satisfies
A
$$\gamma = \frac{1}{2}\left( {\alpha + \beta } \right)$$
B
$$\gamma = \alpha + \frac{\beta }{2}$$
C
$$\gamma = \alpha $$
D
$$\alpha < \gamma < \beta $$
Answer :
$$\alpha < \gamma < \beta $$
Let $$f\left( x \right) = {a^2}{x^2} + 2bx + 2c.$$ From the question, $${a^2}{\alpha ^2} + b\alpha + c = 0$$ and $${a^2}{\beta ^2} - b\beta - c = 0.$$
Now, $$f\left( \alpha \right) = {a^2}{\alpha ^2} + 2b\alpha + 2c = b\alpha + c = - {a^2}{\alpha ^2}$$
$$f\left( \beta \right) = {a^2}{\beta ^2} + 2b\beta + 2c = 3b\beta + 3c = 3\left( {b\beta + c} \right) = 3{a^2}{\beta ^2}.$$
Clearly, $$0 < \alpha < \beta $$
⇒ $$\alpha ,\beta $$ are real. So, $$f\left( \alpha \right) < 0,f\left( \beta \right) > 0.$$
So, $$f\left( \gamma \right) = 0$$ where $$\alpha < \gamma < \beta .$$
193.
If $$x$$ is real, the maximum value of $$\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}\,\,{\text{is}}$$