52.
A quadratic equation whose roots are $${\left( {\frac{\gamma }{\alpha }} \right)^2}$$ and $${\left( {\frac{\beta }{\alpha }} \right)^2},$$ where $$\alpha ,\beta ,\gamma $$ are the roots of $${x^3} + 27 = 0,$$ is
53.
If $$y \ne 0$$ then the number of values of the pair $$(x, y)$$ such that $$x + y + \frac{x}{y} = \frac{1}{2}$$ and $$\left( {x + y} \right)\frac{x}{y} = - \frac{1}{2},$$ is
A
1
B
2
C
0
D
none of these
Answer :
2
$$xy + {y^2} + x = \frac{y}{2},{x^2} + xy = - \frac{y}{2}.$$
Adding, $${\left( {x + y} \right)^2} + x = 0,$$ and subtracting $${y^2} - {x^2} = y - x.$$
Solving these equations, $$x = - 1, y = 2$$ and $$x = - \frac{1}{4} = y.$$
54.Statement-1 : For every natural number $$n \geqslant 2,$$
$$\frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + ...... + \frac{1}{{\sqrt n }} > \sqrt n .$$ Statement-2 : For every natural number $$n \geqslant 2,$$
$$\sqrt {n\left( {n + 1} \right)} < n + 1.$$
A
Statement -1 is false, Statement-2 is true
B
Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
C
Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
D
Statement -1 is true, Statement-2 is false
Answer :
Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
Statement 2 is
$$\eqalign{
& \sqrt {n\left( {n + 1} \right)} < n + 1,n \geqslant 2 \cr
& \Rightarrow \,\,\sqrt n < \sqrt {n + 1} ,n \geqslant 2{\text{ which is true}} \cr
& \Rightarrow \,\,\sqrt 2 < \sqrt 3 < \sqrt 4 < \sqrt 5 < - - - - - < \sqrt n \cr
& {\text{Now}}\,\,\sqrt 2 < \sqrt n \cr
& \Rightarrow \,\,\frac{1}{{\sqrt 2 }} > \frac{1}{{\sqrt n }} \cr
& \sqrt 3 < \sqrt n \Rightarrow \,\,\frac{1}{{\sqrt 3 }} > \frac{1}{{\sqrt n }}; \cr
& \sqrt n \leqslant \sqrt n \Rightarrow \,\,\frac{1}{{\sqrt n }} \geqslant \frac{1}{{\sqrt n }} \cr
& {\text{Also }}\frac{1}{{\sqrt 1 }} > \frac{1}{{\sqrt n }}\,\,\,\,\,\,\,\,\,\,\therefore \,{\text{Adding all,we get}} \cr
& \frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 3 }} + ...... + \frac{1}{n} > \frac{n}{{\sqrt n }} = \sqrt n \cr} $$
Hence both the statements are correct and statement - 2 is a correct explanation of statement - 1.
55.
If $$a \in R,b \in R$$ then the factors of the expression $$a\left( {{x^2} - {y^2}} \right) - bxy$$ are
59.
Let $$\alpha ,\beta $$ be the roots of $$x^2 + x +1 = 0.$$ Then the equation whose roots are $${\alpha ^{229}}$$ and $${\alpha ^{1004}}$$ is
A
$$x^2 - x - 1 = 0$$
B
$$x^2 - x + 1 = 0$$
C
$$x^2 + x - 1 = 0$$
D
$$x^2 + x + 1 = 0$$
Answer :
$$x^2 + x + 1 = 0$$
The roots of $$x^2 + x + 1 = 0$$ are $$\omega $$ and $$\omega ^2$$
[see the cube roots of unity in complex numbers]
Let, $$\alpha = \omega ,\beta = {\omega ^2}$$
Now, $${\alpha ^{229}} = {\omega ^{229}} = {\omega ^{228}}.\omega = {\left( {{\omega ^3}} \right)^{76}}.\omega = \omega = \alpha \left( {\because {\omega ^3} = 1} \right)$$
$${\alpha ^{1004}} = {\omega ^{1002}}.{\omega ^2} = {\left( {{\omega ^3}} \right)^{334}}.{\omega ^2} = {\omega ^2} = \beta $$
∴ equation with roots $${\alpha ^{229}}$$ and $${\alpha ^{1004}}$$ is same as the equation with roots $$\alpha$$ and $$\beta\,$$ i.e., the original equation.
60.
If the equations $${x^2} + ix + a = 0,{x^2} - 2x + ia = 0,a \ne 0$$ have a common root then
A
$$a$$ is real
B
$$a = \frac{1}{2} + i$$
C
$$a = \frac{1}{2} - i$$
D
the other root is also common
Answer :
$$a = \frac{1}{2} - i$$
As all the coefficients are not real, one common root does not imply that the other root is also common.
Let $$\alpha $$ be the common root. Then $${\alpha ^2} + i\alpha + a = 0,{\alpha ^2} - 2\alpha + ia = 0$$
$$\eqalign{
& \Rightarrow \,\,\frac{{{\alpha ^2}}}{a} = \frac{\alpha }{{a\left( {1 - i} \right)}} = \frac{1}{{ - 2 - i}} \cr
& \Rightarrow \,\,{a^2}{\left( {1 - i} \right)^2} = a\left( { - 2 - i} \right). \cr} $$