Quadratic Equation MCQ Questions & Answers in Algebra | Maths

Learn Quadratic Equation MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The value of $$'a'$$ for which one root of the quadratic equation $$\left( {{a^2} - 5a + 3} \right){x^2} + \left( {3a - 1} \right)x + 2 = 0$$        is twice as large as the other is

A $$ - \frac{1}{3}$$
B $$ \frac{2}{3}$$
C $$ - \frac{2}{3}$$
D $$ \frac{1}{3}$$
Answer :   $$ \frac{2}{3}$$

72. The number of values of $$k$$ for which $$\left\{ {{x^2} - \left( {k - 2} \right)x + {k^2}} \right\}\left\{ {{x^2} + kx + \left( {2k - 1} \right)} \right\}$$         is a perfect square is

A 1
B 2
C 0
D None of these
Answer :   1

73. A value of $$b$$ for which the equations
$$\eqalign{ & {x^2} + bx - 1 = 0 \cr & {x^2} + x + b = 0 \cr} $$
have one root in common is

A $$ - \sqrt 2 $$
B $$ - i \sqrt 3 $$
C $$ i \sqrt 5 $$
D $$ \sqrt 2 $$
Answer :   $$ - i \sqrt 3 $$

74. Let $$\alpha \ne \beta $$  and $${\alpha ^2} + 3 = 5\alpha $$   while $${\beta ^2} = 5\beta - 3.$$   The quadratic equation whose roots are $$\frac{\alpha }{\beta }$$ and $$\frac{\beta }{\alpha }$$ is

A $$3{x^2} - 31x + 3 = 0$$
B $$3{x^2} - 19x + 3 = 0$$
C $$3{x^2} + 19x + 3 = 0$$
D None of these
Answer :   $$3{x^2} - 19x + 3 = 0$$

75. If $$f\left( x \right) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$$    for every real number $$x$$ then the minimum value of $$f$$

A does not exist because $$f$$ is unbounded
B is not attained even though $$f$$ is bounded
C is equal to $$1$$
D is equal to $$- 1$$
Answer :   is equal to $$- 1$$

76. For the equation $$\left| {{x^2}} \right| + \left| x \right| - 6 = 0,$$    the roots are

A One and only one real number
B Real with sum one
C Real with sum zero
D Real with product zero
Answer :   Real with sum zero

77. The set of all real numbers $$x$$ for which $${x^2} - \left| {x + 2} \right| + x > 0,\,{\text{is}}$$

A $$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
B $$\left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)$$
C $$\left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)$$
D $$\left( {\sqrt 2 ,\infty } \right)$$
Answer :   $$\left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)$$

78. If $$p, q, r$$  are any real numbers, then

A $${\text{max}} (p, q) < {\text{max}} (p, q, r)$$
B $${\text{min}}\left( {p,q} \right) = \frac{1}{2}\left( {p + q - \left| {p - q} \right|} \right)$$
C $${\text{max}} (p, q) < {\text{min}} (p, q, r)$$
D none of these
Answer :   $${\text{min}}\left( {p,q} \right) = \frac{1}{2}\left( {p + q - \left| {p - q} \right|} \right)$$

79. If the roots of the equation $${x^2} - 2ax + {a^2} + a - 3 = 0$$      are less than 3 then

A $$a < 2$$
B $$2 \leqslant a \leqslant 3$$
C $$3 < a \leqslant 4$$
D $$a > 4$$
Answer :   $$a < 2$$

80. The solution set of the inequation $${\log _{\frac{1}{3}}}\left( {{x^2} + x + 1} \right) + 1 > 0$$      is

A $$\left( { - \infty , - 2} \right) \cup \left( {1, + \infty } \right)$$
B $$[- 1, 2]$$
C $$\left( { - 2 , 1 } \right)$$
D $$\left( { - \infty , + \infty } \right)$$
Answer :   $$\left( { - 2 , 1 } \right)$$