Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

141. Let $$a, b, c$$  be in A.P. with a common difference $$d.$$ Then $${e^{\frac{1}{c}}},{e^{\frac{b}{{ac}}}},{e^{\frac{1}{a}}}$$  are in :

A G.P. with common ratio $$e^d$$
B G.P. with common ratio $${e^{\frac{1}{d}}}$$
C G.P. with common ratio $${e^{\frac{d}{{\left( {{b^2} - {d^2}} \right)}}}}$$
D A.P.
Answer :   G.P. with common ratio $${e^{\frac{d}{{\left( {{b^2} - {d^2}} \right)}}}}$$

142. $${1^3} - {2^3} + {3^3} - {4^3} + ..... + {9^3} = $$

A 425
B $$- 425$$
C 475
D $$- 475$$
Answer :   425

143. If $$a, b, c, d$$   are non-zero real numbers such that $$\left( {{a^2} + {b^2} + {c^2}} \right)\left( {{b^2} + {c^2} + {d^2}} \right) \leqslant {\left( {ab + bc + cd} \right)^2}$$          then $$a, b, c, d$$   are in

A A.P.
B G.P.
C H.P.
D none of these
Answer :   G.P.

144. If in a series $${t_n} = \frac{n}{{\left( {n + 1} \right)!}}$$   then $$\sum\limits_{n = 1}^{20} {{t_n}} $$  is equal to

A $$\frac{{20!\, - 1}}{{20!}}$$
B $$\frac{{21!\, - 1}}{{21!}}$$
C $$\frac{1}{{2\left( {n - 1} \right)!}}$$
D none of these
Answer :   $$\frac{{21!\, - 1}}{{21!}}$$

145. If $$x = {\log_5}3 + {\log _7}5 + {\log _9}7$$      then

A $$x \geqslant \frac{3}{2}$$
B $$x \geqslant \frac{1}{{\root 3 \of 2 }}$$
C $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$
D none of these
Answer :   $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$

146. If $$\log \left( {\frac{{5c}}{a}} \right),\log \left( {\frac{{3b}}{{5c}}} \right)$$    and $$\log \left( {\frac{a}{{3b}}} \right)$$  are in A.P., where $$a, b, c$$  are in G.P., then $$a, b, c$$  are the lengths of sides of

A an isosceles triangle
B an equilateral triangle
C a scalene triangle
D none of these
Answer :   none of these

147. An A.P. whose first term is unity and in which the sum of first half of any even number of terms to that of second half of the same number of terms is a constant ratio, then the common difference is :

A 2
B 1
C 3
D None of these
Answer :   2

148. The sum of an infinite geometric series is 2 and the sum of the geometric series made from the cubes of this infinite sereis is 24. Then the series is

A $$3 + \frac{3}{2} - \frac{3}{4} + \frac{3}{8} - .....$$
B $$3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + .....$$
C $$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + .....$$
D None of these
Answer :   $$3 - \frac{3}{2} + \frac{3}{4} - \frac{3}{8} + .....$$

149. If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A $$xyz$$
B 0
C 1
D None of these
Answer :   1

150. $$ABC$$  is a right-angled triangle in which $$\angle B = {90^ \circ }$$  and $$BC = a.$$  If $$n$$ points $${L_1},{L_2},.....,{L_n}$$    on $$AB$$  are such that $$AB$$  is divided in $$n + 1$$  equal parts and $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$      are line segments parallel to $$BC$$  and $${M_1},{M_2},.....,{M_n}$$    are on $$AC$$  then the sum of the lengths of $${L_1}{M_1},{L_2}{M_2},.....,{L_n}{M_n}$$      is

A $$\frac{{a\left( {n + 1} \right)}}{2}$$
B $$\frac{{a\left( {n - 1} \right)}}{2}$$
C $$\frac{{an}}{2}$$
D impossible to find from the given data
Answer :   $$\frac{{an}}{2}$$