Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

191. $$ABC$$  is a right angled triangle in which $$\angle B = {90^ \circ }$$  and $$BC = a.$$  If $$n$$ points $${L_1},{L_2},....,{L_n}$$   on $$AB$$  are such that $$AB$$  is divided in $$n + 1$$  equal parts and $${L_1}{M_1},{L_2}{M_2},....,{L_n}{M_n}$$     are line segments parallel to $$BC$$  and $${M_1},{M_2},....,{M_n}$$    are on $$AC,$$ then the sum of the lengths of $${L_1}{M_1},{L_2}{M_2},....,{L_n}{M_n}$$     is

A $$\frac{{a\left( {n + 1} \right)}}{2}$$
B $$\frac{{a\left( {n - 1} \right)}}{2}$$
C $$\frac{{an}}{2}$$
D None of these
Answer :   $$\frac{{an}}{2}$$

192. Let $${a_1},{a_2},{a_3},.....$$    be in A.P. and $${a_p},{a_q},{a_r}$$   be in G.P. Then $${a_q}:{a_p}$$  is equal to

A $$\frac{{r - p}}{{q - p}}$$
B $$\frac{{q - p}}{{r - q}}$$
C $$\frac{{r - q}}{{q - p}}$$
D none of these
Answer :   $$\frac{{r - q}}{{q - p}}$$

193. $$x$$ and $$y$$ are positive number. Let $$g$$ and $$a$$ be G.M. and A.M. of these numbers. Also let $$G$$ be G.M. of $$x + 1$$  and $$y + 1.$$  If $$G$$ and $$g$$ are roots of equation $${x^2} - 5x + 6 = 0,$$    then

A $$x = 2,y = \frac{3}{4}$$
B $$x = \frac{3}{4},y = 12$$
C $$x = \frac{5}{2},y = \frac{8}{5}$$
D $$x = y = 2$$
Answer :   $$x = y = 2$$

194. The least value of $$n$$ (a natural number), for which the sum $$S$$ of the series $$1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + .....$$     differs from $$S_n$$ by a quantity $$ < {10^{ - 6}},$$  is

A 21
B 20
C 19
D None
Answer :   21

195. If the $$n^{th}$$ term of an arithmetic progression is $$3n + 7,$$  then what is the sum of its first 50 terms ?

A 3925
B 4100
C 4175
D 8200
Answer :   4175

196. Consider the sequence $$8A + 2B, 6A + B, 4A, 2A – B, ....,$$       Which term of this sequence will have a coefficient of $$A$$ which is twice the coefficient of $$B$$ ?

A $${10^{th}}$$
B $${14^{th}}$$
C $${16^{th}}$$
D None of these
Answer :   None of these

197. The $$20^{th}$$ terms of the series $$2 + 3 + 5 + 9 + 16 + . . . . . \,$$     is

A 950
B 975
C 990
D 1010
Answer :   990

198. If the roots of the equation $${x^3} - 12{x^2} + 39x - 28 = 0$$      are in A.P., then their common difference will be :

A $$ \pm 1$$
B $$ \pm 2$$
C $$ \pm 3$$
D $$ \pm 4$$
Answer :   $$ \pm 3$$

199. The sum of the infinite series $$\frac{{{2^2}}}{{2\,!}} + \frac{{{2^4}}}{{4\,!}} + \frac{{{2^6}}}{{6\,!}} + .....$$     is equal to

A $$\frac{{{e^2} + 1}}{{2e}}$$
B $$\frac{{{e^4} + 1}}{{2e^2}}$$
C $$\frac{{{{\left( {{e^2} - 1} \right)}^2}}}{{2{e^2}}}$$
D $$\frac{{{{\left( {{e^2} + 1} \right)}^2}}}{{2{e^2}}}$$
Answer :   $$\frac{{{{\left( {{e^2} - 1} \right)}^2}}}{{2{e^2}}}$$

200. The value of $$x$$ in $$\left( {0,\pi } \right)$$  which satisfy the equation $${8^{1 + \left| {\cos x} \right| + {{\cos }^2}x + \left| {{{\cos }^3}x} \right| + .....\,{\text{to }}\infty }} = {4^3}\,{\text{is}}$$

A $$\left\{ {\frac{\pi }{2},\frac{{3\pi }}{4}} \right\}$$
B $$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$
C $$\left\{ {\frac{\pi }{3},\frac{{2\pi }}{3}} \right\}$$
D $$\left\{ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right\}$$
Answer :   $$\left\{ {\frac{\pi }{3},\frac{{2\pi }}{3}} \right\}$$