Sequences and Series MCQ Questions & Answers in Algebra | Maths

Learn Sequences and Series MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

51. Three circles of radii $$a, b, c (a < b < c)$$    touch each other externally. If they have $$x$$ - axis as a common tangent, then:

A $$\frac{1}{{\sqrt a }} = \frac{1}{{\sqrt b }} + \frac{1}{{\sqrt c }}$$
B $$\frac{1}{{\sqrt b }} = \frac{1}{{\sqrt a }} + \frac{1}{{\sqrt c }}$$
C $$a, b, c$$   are in A.P.
D $$\sqrt a ,\sqrt b ,\sqrt c {\text{ are in A}}{\text{.P}}{\text{.}}$$
Answer :   $$\frac{1}{{\sqrt a }} = \frac{1}{{\sqrt b }} + \frac{1}{{\sqrt c }}$$

52. Let $$S$$ be the sum, $$P$$ be the product and $$R$$ be the sum of the reciprocals of $$n$$ terms of a G.P. Then $${P^2}{R^n}:{S^n}$$   is equal to

A $$1 : 1$$
B $${\left( {{\text{common ratio}}} \right)^n}:1$$
C $${\left( {{\text{first term}}} \right)^2}:{\left( {{\text{common ratio}}} \right)^n}$$
D none of these
Answer :   $$1 : 1$$

53. The minimum value of $$\frac{{{x^4} + {y^4} + {z^2}}}{{xyz}}$$   for positive real number $$x, y, z$$  is

A $$\sqrt 2 $$
B $$2\sqrt 2 $$
C $$4\sqrt 2 $$
D $$8\sqrt 2 $$
Answer :   $$2\sqrt 2 $$

54. If $$m$$ is the A.M. of two distinct real numbers $$l$$ and $$n ( l, n > 1)$$   and $${{{G}}_1}{{,}}{{{G}}_2}$$  and $${{{G}}_3}$$ are three geometric means between $$l$$ and $$n,$$ then $${{G}}_1^4 + {{2G}}_2^4{{ + }}{{G}}_3^4$$    equals:

A $$4\,lm{n^2}$$
B $$4\,{l^2}{m^2}{n^2}$$
C $$4\,{l^2}mn$$
D $$4\,l{m^2}n$$
Answer :   $$4\,l{m^2}n$$

55. The value of $$\sum\limits_{n = 1}^{10} {\sum\limits_{m = 1}^{10} {\left( {{m^2} + {n^2}} \right){\text{equals}}} } $$

A 4235
B 5050
C 7700
D None of these
Answer :   7700

56. Let $$a, b, c$$  be in A.P. Consider the following statements :
$$\eqalign{ & 1.\,\,\,\frac{1}{{ab}},\frac{1}{{ca}}{\text{and}}\frac{1}{{bc}}{\text{are in A}}{\text{.P}}{\text{.}} \cr & {\text{2}}{\text{.}}\,\,\,\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt c + \sqrt a }}{\text{and}}\frac{1}{{\sqrt a + \sqrt b }}{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
Which of the statements given above is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2

57. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then the common ratio is

A 5
B 1
C 4
D 3
Answer :   4

58. $$\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ..... + \frac{1}{{n\left( {n + 1} \right)}}\,{\text{equals}}$$

A $$\frac{1}{{n\left( {n + 1} \right)}}$$
B $$\frac{n}{{ {n + 1} }}$$
C $$\frac{2n}{{ {n + 1}}}$$
D $$\frac{2}{{n\left( {n + 1} \right)}}$$
Answer :   $$\frac{n}{{ {n + 1} }}$$

59. Concentric circles of radii $$1, 2, 3, . . . .100 \,cm$$    are drawn. The interior of the smallest circle is coloured red and the angular regions are coloured alternately green and red, so that no two adjacent regions are of the same colour. The total area of the green regions on $$sq\,cm$$  is equal to

A $$1000\,\pi $$
B $$5050\,\pi $$
C $$4950\,\pi $$
D $$5151\,\pi $$
Answer :   $$5050\,\pi $$

60. If $${S_n} = \left( {1 + {3^{ - 1}}} \right)\left( {1 + {3^{ - 2}}} \right)\left( {1 + {3^{ - 4}}} \right)\left( {1 + {3^{ - 8}}} \right).....\left( {1 + {3^{ - {2^n}}}} \right),$$            then $${S_\infty }$$ is equal to

A $$1$$
B $$\frac{1}{2}$$
C $$\frac{3}{2}$$
D None of these
Answer :   $$\frac{3}{2}$$