143.
Which one of the following curves cut the parabola $${y^2} = 4ax$$ at right angles?
A
$${x^2} + {y^2} = {a^2}$$
B
$$y = {e^{ - \frac{x}{{2a}}}}$$
C
$$y = ax$$
D
$${x^2} = 4ay$$
Answer :
$${x^2} = 4ay$$
For $${y^2} = 4ax,\,y $$ - axis is tangent at (0, 0), while for $${x^2} = 4ay,\,x $$ - axis is tangent at (0, 0). Thus the two curves cut each other at right angles.
144.
If $$y = \int_0^x {\frac{{{t^2}}}{{\sqrt {{t^2} + 1} }}dt} $$ then the rate of change of $$y$$ with respect to $$x$$ when $$x=1,$$ is :
$$\eqalign{
& y = \frac{2}{3}{x^3} + \frac{1}{2}{x^2} \cr
& \therefore \,\frac{{dy}}{{dx}} = \frac{2}{3}3{x^2} + \frac{1}{2}2x \cr
& = 2{x^2} + x \cr} $$
Since the tangent makes equal angles with the axes.
$$\eqalign{
& \therefore \,\frac{{dy}}{{dx}} = \pm 1 \cr
& {\text{or 2}}{x^2} + x = \pm 1 \cr
& {\text{or 2}}{x^2} + x - 1 = 0\,\,\,\,\,\left( {{\text{2}}{x^2} + x + 1 = 0{\text{ has no real roots}}} \right) \cr
& {\text{or }}\left( {2x - 1} \right)\left( {x + 1} \right) = 0 \cr
& {\text{i}}{\text{.e}}{\text{., }}x = \frac{1}{2}{\text{ or }}x = - 1 \cr} $$
146.
The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs $$Rs.48$$ per hour at $$16$$ miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to $$Rs.300$$ per hour is :
A
10
B
20
C
30
D
40
Answer :
40
Let the speed of the train be $$v$$ and distance to be covered be $$s$$ so that total time taken is $$\frac{s}{v}$$ hours. Cost of fuel per hour $$ = k{v^2}$$ ($$k$$ is constant)
Also $$48 = k.\,{16^2}$$ by given condition
$$\therefore \,k = \frac{3}{{16}}$$
$$\therefore $$ Cost to fuel per hour $$\frac{3}{{16}}{v^2}$$
Other charges per hour are $$300$$
Total running cost,
$$\eqalign{
& C = \left( {\frac{3}{{16}}{v^2} + 300} \right)\frac{s}{v} = \frac{{3s}}{{16}}v + \frac{{300s}}{v} \cr
& \frac{{dC}}{{dv}} = \frac{{3s}}{{16}} - \frac{{300s}}{{{v^2}}} = 0 \Rightarrow v = 40 \cr
& \frac{{{d^2}C}}{{d{v^2}}} = \frac{{600s}}{{{v^3}}} > 0 \cr} $$
$$\therefore \,v = 40$$ results in minimum running cost.
147.
If $$f\left( x \right) = \left( {ab - {b^2} - 2} \right)x + \int_0^x {\left( {{{\cos }^4}\,\theta + {{\sin }^4}\theta \,} \right)} d\theta $$ is a decreasing function of $$x$$ for all $$x\, \in \,R$$ and $$b\, \in \,R,\,b$$ being independent of $$x,$$ then :
$$\eqalign{
& f'\left( x \right) = ab - {b^2} - 2 + {\cos ^4}x + {\sin ^4}x < 0 \cr
& \Rightarrow ab - {b^2} - 2 + {\left( {{{\cos }^2}x + {{\sin }^2}x} \right)^2} - 2{\sin ^2}x.\,{\cos ^2}x < 0 \cr
& {\text{or, }}ab - {b^2} - 1 < \frac{1}{2}{\sin ^2}2x < \frac{1}{2} \cr
& {\text{or, }}2ab - 2{b^2} - 2 < 1 \cr
& {\text{or, }}2{b^2} - 2ab + 3 > 0 \cr} $$
This is true for any $$b\, \in \,R$$ if $$D < 0,$$ that is, $$4{a^2} - 4.2.3 < 0$$
$${\text{or, }}{a^2} < 6\,\,\,\,\,{\text{or, }} - \sqrt 6 < a < \sqrt 6 $$
148.
The function $$f\left( x \right) = {x^3} + \lambda {x^2} + 5x + \sin \,2x$$ will be an invertible function if $$\lambda $$ belongs to :
A
$$\left( { - \infty ,\, - 3} \right)$$
B
$$\left( { - 3,\,3} \right)$$
C
$$\left( {3,\, + \infty } \right)$$
D
none of these
Answer :
$$\left( { - 3,\,3} \right)$$
$$\eqalign{
& f'\left( x \right) = 3{x^2} + 2\lambda x + 5 + 2\cos \,2x \leqslant 3{x^2} + 2\lambda x + 7\,\,\,\,\left( {\because \max \,\cos \,2x = 1} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \geqslant 3{x^2} + 2\lambda x + 3\,\,\,\left( {\because \min \,\cos \,2x = - 1} \right) \cr
& {\text{But }}3{x^2} + 2\lambda x + 7 < 0{\text{ is not true for all}}\;x\, \in \,R \cr
& \therefore \,f'\left( x \right) \geqslant 3{x^2} + 2\lambda x + 3 > 0{\text{ for all }}x{\text{ if }}D < 0,{\text{ i}}{\text{.e}}{\text{., }}4{\lambda ^2} - 4.3.3 < 0 \cr
& {\text{or, }}{\lambda ^2} - 9 < 0\,\,\,\, \Rightarrow - 3 < \lambda < 3 \cr} $$
$$\therefore $$ if $$ - 3 < \lambda < 3,\,f\left( x \right)$$ is strictly $$m.i.$$ and so $$f\left( x \right)$$ is invertible.
149.
A lamp is $$50\,ft$$ above the ground. A ball is dropped from the same height from a point $$30\,ft$$ away from the light pole. If ball falls a distance $$s = 16{t^2}\,ft$$ in $$t$$ seconds, then the speed of the shadow of the ball moving along the ground $$\frac{1}{2}\,s$$ later is :
A
$$ - 1500\,ft/s$$
B
$$1500\,ft/s$$
C
$$ - 1600\,ft/s$$
D
$$1600\,ft/s$$
Answer :
$$ - 1500\,ft/s$$
At time $$t,$$ ball drops $$16{t^2}\,ft$$ distance. Therefore, $$y = 50 - 16{t^2}.....\left( 1 \right)$$
Point $$A$$ is the position of the falling ball at some time $$t.$$ So, $$\frac{{dy}}{{dt}} = - 32t$$
From the figure, $$\tan \,\theta = \frac{y}{x} = \frac{{50}}{{30 + x}}{\text{ or }}y = \left( {\frac{{50}}{{30 + x}}} \right).x$$
$$\eqalign{
& \therefore \,\frac{{dy}}{{dt}} = \frac{d}{{dt}}\left( {\frac{{50}}{{30 + x}}} \right) = \frac{{1500}}{{{{\left( {30 + x} \right)}^2}}}.\frac{{dx}}{{dt}} \cr
& {\text{or }}\frac{{dx}}{{dt}} = \frac{{\left( {30 + {x^2}} \right)}}{{1500}}\left( { - 32t} \right) \cr
& {\text{When }}f = \frac{1}{2},\,y = 46\,\,\,\,\,\,\,\left[ {{\text{using}}\left( 1 \right)} \right] \cr
& {\text{and }}x = 345\,\,\,\,\,\,\,\left[ {{\text{using}}\left( 2 \right)} \right] \cr
& \therefore \,\frac{{dx}}{{dt}} = - 16\frac{{{{\left( {375} \right)}^2}}}{{1500}} = - 1500\,{\text{ft/s}} \cr} $$
150.
Let $$f$$ and $$g$$ be functions from the interval $$\left[ {0,\,\infty } \right)$$ to the interval $$\left[ {0,\,\infty } \right),\,f$$ being an increasing and $$g$$ being a decreasing function. If $$f\left\{ {g\left( 0 \right)} \right\} = 0$$ then :
A
$$f\left\{ {g\left( x \right)} \right\} \geqslant f\left\{ {g\left( 0 \right)} \right\}$$
B
$$g\left\{ {f\left( x \right)} \right\} \leqslant g\left\{ {f\left( 0 \right)} \right\}$$