Application of Derivatives MCQ Questions & Answers in Calculus | Maths

Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

151. Let $$f\left( x \right) = \frac{4}{3}{x^3} - 4x,\,0 \leqslant x \leqslant 2.$$      Then the global minimum value of the function is :

A 0
B $$ - \frac{8}{3}$$
C $$-4$$
D none of these
Answer :   $$ - \frac{8}{3}$$

152. The function $$f\left( x \right) = {\tan ^{ - 1}}x - x$$     is monotonically decreasing in the set :

A $$R$$
B $$\left( {0,\,+\infty } \right)$$
C $$R - \left\{ 0 \right\}$$
D none of these
Answer :   $$R - \left\{ 0 \right\}$$

153. Let the function $$g:\left( { - \infty ,\infty } \right) \to \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$     be given by $$g\left( u \right) = 2{\tan ^{ - 1}}\left( {{e^u}} \right) - \frac{\pi }{2}.$$     Then, $$g$$ is

A even and is strictly increasing in $$\left( {0,\infty } \right)$$
B odd and is strictly decreasing in $$\left( { - \infty ,\infty } \right)$$
C odd and is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
D neither even nor odd, but is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
Answer :   odd and is strictly increasing in $$\left( { - \infty ,\infty } \right)$$

154. The point $$\left( {0,\,3} \right)$$  is nearest to the curve $${x^2} = 2y$$   at :

A $$\left( {2\sqrt 2 ,\,0} \right)$$
B $$\left( {0,\,0} \right)$$
C $$\left( {2,\,2} \right)$$
D none of these
Answer :   $$\left( {2,\,2} \right)$$

155. The equation of the tangent to the curve $$y = x + \frac{4}{{{x^2}}},$$   that is parallel to the $$x$$-axis, is

A $$y = 1$$
B $$y = 2$$
C $$y = 3$$
D $$y = 0$$
Answer :   $$y = 3$$

156. What is the value of $$p$$ for which the function $$f\left( x \right) = p\,\sin \,x + \frac{{\sin \,3x}}{3}$$     has an extremum at $$x = \frac{\pi }{3}\,?$$

A $$0$$
B $$1$$
C $$ - 1$$
D $$2$$
Answer :   $$2$$

157. The function $$f:R \to \left[ { - \frac{1}{2},\frac{1}{2}} \right]$$    defined as $$f\left( x \right) = \frac{x}{{1 + {x^2}}}, $$    is

A neither injective nor surjective
B invertible
C injective but not surjective
D surjective but not injective
Answer :   surjective but not injective

158. A balloon is pumped at the rate of $$a\,c{m^3}/minute.$$   The rate of increase of its surface area when the radius is $$b\,cm,$$  is :

A $$\frac{{2{a^2}}}{{{b^4}}}\,{\text{c}}{{\text{m}}^2}{\text{/minute}}$$
B $$\frac{a}{{2b}}\,{\text{c}}{{\text{m}}^2}{\text{/minute}}$$
C $$\frac{{2a}}{b}\,{\text{c}}{{\text{m}}^2}{\text{/minute}}$$
D none of these
Answer :   $$\frac{{2a}}{b}\,{\text{c}}{{\text{m}}^2}{\text{/minute}}$$

159. If $$p$$ and $$q$$ are positive real numbers such that $${p^2} + {q^2} = 1,$$   then the maximum value of $$\left( {p + q} \right)$$  is

A $$\frac{1}{2}$$
B $$\frac{1}{{\sqrt 2 }}$$
C $$\sqrt 2 $$
D 2
Answer :   $$\sqrt 2 $$

160. The least value of a or which $$4a{x^2} + \frac{1}{x} \geqslant 1,$$    for all $$x > 0,$$  is

A $$\frac{1}{{64}}$$
B $$\frac{1}{{32}}$$
C $$\frac{1}{{27}}$$
D $$\frac{1}{{25}}$$
Answer :   $$\frac{1}{{27}}$$