Application of Derivatives MCQ Questions & Answers in Calculus | Maths

Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

161. The velocity $$v$$ of a particle at any instant $$t$$ moving in a straight line is given by $$v = s + 1$$   where $$s$$ metre is the distance travelled in $$t$$ second. What is the time taken by the particle to cover a distance of $$9m\,?$$

A $$1\,s$$
B $$\left( {\log \,10} \right)s$$
C $$2\left( {\log \,10} \right)s$$
D $$10\,s$$
Answer :   $$\left( {\log \,10} \right)s$$

162. The triangle formed by the tangent to the curve $$f\left( x \right) = {x^2} + bx - b$$     at the point (1,1) and the coordinate axes, lies in the first quadrant. If its area is 2, then the value of $$b$$ is

A - 1
B 3
C - 3
D 1
Answer :   - 3

163. The point(s) on the curve $${y^3} + 3{x^2} = 12y$$    where the tangent is vertical, is (are)

A $$\left( { \pm \frac{4}{{\sqrt 3 }}, - 2} \right)$$
B $$\left( { \pm \sqrt {\frac{{11}}{3}} ,1} \right)$$
C $$\left( {0,0} \right)$$
D $$\left( { \pm \frac{4}{{\sqrt 3 }},2} \right)$$
Answer :   $$\left( { \pm \frac{4}{{\sqrt 3 }},2} \right)$$

164. A function $$g\left( x \right)$$  is defined as $$g\left( x \right) = \frac{1}{4}f\left( {2{x^2} - 1} \right) + \frac{1}{2}f\left( {1 - {x^2}} \right)$$        and $$f'\left( x \right)$$  is an increasing function. Then $$g\left( x \right)$$  is increasing in the interval :

A $$\left( { - 1,\,1} \right)$$
B $$\left( { - \sqrt {\frac{2}{3}} ,\,0} \right) \cup \left( {\sqrt {\frac{2}{3}} ,\,\infty } \right)$$
C $$\left( { - \sqrt {\frac{2}{3}} ,\,\sqrt {\frac{2}{3}} } \right)$$
D none of these
Answer :   $$\left( { - \sqrt {\frac{2}{3}} ,\,0} \right) \cup \left( {\sqrt {\frac{2}{3}} ,\,\infty } \right)$$

165. The function defined by $$f\left( x \right) = \left( {x + 2} \right){e^{ - x}}$$     is

A decreasing for all $$x$$
B decreasing in $$\left( { - \infty , - 1} \right)$$   and increasing $$\left( { - 1,\infty } \right)$$
C increasing for all $$x$$
D decreasing in $$\left( { - 1,\infty } \right)$$   and increasing in $$\left( { - \infty , - 1} \right)$$
Answer :   decreasing in $$\left( { - 1,\infty } \right)$$   and increasing in $$\left( { - \infty , - 1} \right)$$

166. Let $$P\left( x \right) = {a_0} + {a_1}{x^2} + {a_2}{x^4} + ..... + {a_n}{x^{2n}}$$         be a polynomial in a real variable $$x$$ with $$0 < {a_0} < {a_1} < {a_2} < ..... < {a_n}.$$       The function $$P\left( x \right)$$  has :

A neither a maximum nor a minimum
B only one maximum
C only one minimum
D only one maximum and only one minimum
Answer :   only one minimum

167. If $$f\left( x \right) = {x^\alpha }\log x$$     and $$f\left( 0 \right) = 0,$$   then the value of $$\alpha $$ for which Rolle’s theorem can be applied in [0, 1] is

A -2
B -1
C 0
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{2}$$

168. Find the minimum value of $${e^{\left( {2{x^2} - 2x - 1} \right){{\sin }^2}x}} = ?$$

A 1
B 2
C 0
D none of these
Answer :   1

169. On the interval [0, 1] the function $${x^{25}}{\left( {1 - x} \right)^{75}}$$   takes its maximum value at the point

A 0
B $$\frac{1}{4}$$
C $$\frac{1}{2}$$
D $$\frac{1}{3}$$
Answer :   $$\frac{1}{4}$$

170. The distance of the point on $$y = {x^4} + 3{x^2} + 2x$$     which is nearest to the line $$y = 2x - 1$$   is :

A $$\frac{2}{{\sqrt 5 }}$$
B $$\sqrt 5 $$
C $$\frac{1}{{\sqrt 5 }}$$
D $$5\sqrt 5 $$
Answer :   $$\frac{1}{{\sqrt 5 }}$$