Application of Derivatives MCQ Questions & Answers in Calculus | Maths
Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
191.
The slope of the tangent to a curve $$y = f\left( x \right)$$ at $$\left[ {x,f\left( x \right)} \right]$$ is $$2x + 1.$$ If the curve passes through the point (1, 2), then the area bounded by the curve, the $${x}$$ - axis and the line $$x = 1$$ is
192.
Area of the greatest rectangle that can be inscribed in the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ is
A
$$2ab$$
B
$$ab$$
C
$$\sqrt {ab} $$
D
$$\frac{a}{b}$$
Answer :
$$2ab$$
Area of rectangle $$ABCD = 2a\cos \theta $$
$$\left( {2b\sin \theta } \right) = 2ab\sin 2\theta $$
$$ \Rightarrow \,$$ Area of greatest rectangle is equal to $$2ab$$
When $$\sin 2\theta = 1$$
193.
The function $$f\left( x \right) = \frac{{\ln \left( {\pi + x} \right)}}{{\ln \left( {e + x} \right)}}$$ is
A
increasing on $$\left( {0,\infty } \right)$$
B
decreasing on $$\left( {0,\infty } \right)$$
C
increasing on $$\left( {0,\frac{\pi }{e}} \right),$$ decreasing on $$\left( {\frac{\pi }{e},\infty } \right)$$
D
decreasing on $$\left( {0,\frac{\pi }{e}} \right),$$ increasing on $$\left( {\frac{\pi }{e},\infty } \right)$$
Answer :
decreasing on $$\left( {0,\infty } \right)$$
$$\eqalign{
& {\text{We}}\,{\text{have}}\,\,f\left( x \right) = \frac{{\ln \left( {\pi + x} \right)}}{{\ln \left( {e + x} \right)}} \cr
& \therefore \quad {f^\prime }(x) = \frac{{\left( {\frac{1}{{\pi + x}}} \right)\ln (e + x) - \frac{1}{{(e + x)}}\ln (\pi + x)}}{{{{[\ln (e + x)]}^2}}} \cr
& = \frac{{(e + x)\ln (e + x) - (\pi + x)\ln (\pi + x)}}{{(e + x)(\pi + x){{(\ln (e + x))}^2}}} \cr
& < 0{\text{ on }}(0,\infty ){\text{ since }}1 < e < \pi \cr
& \therefore f\left( x \right)\,{\text{decraeses}}\,{\text{on}}\,(0,\infty ). \cr} $$
194.
If $$f\left( x \right) = \frac{{{p^2} - 1}}{{{p^2} + 1}}{x^3} - 3x + \log \,2$$ is a decreasing function of $$x$$ in $$R$$ then the set of possible values of $$p$$ ( independent of $$x$$ ) is :
A
$$\left[ { - 1,\,1} \right]$$
B
$$\left[ {1,\,\infty } \right)$$
C
$$\left( { - \infty ,\, - 1} \right]$$
D
none of these
Answer :
$$\left[ { - 1,\,1} \right]$$
$$\eqalign{
& f'\left( x \right) = \frac{{{p^2} - 1}}{{{p^2} + 1}}.3{x^2} - 3 < 0 \cr
& \Rightarrow \frac{{{p^2} - 1}}{{{p^2} + 1}}{x^2} < 1 \cr
& \Rightarrow \left( {{p^2} - 1} \right){x^2} - \left( {{p^2} + 1} \right) < 0 \cr} $$
The inequation is satisfied for all $$x\, \in \,R$$ if $${p^2} - 1 \leqslant 0,{\text{ i}}{\text{.e}}{\text{., }} - 1 \leqslant p \leqslant 1$$
195.
If $$\theta $$ is a positive acute angle then :
Given, $$f'\left( x \right) < 0$$ and $$g'\left( x \right) > 0$$ therefore $$g\left( x \right)$$ is an increasing function and $$f'\left( x \right)$$ is a decreasing function
$$\eqalign{
& \therefore \,x + 1 < x + 5 \cr
& \Rightarrow g\left( {x + 1} \right) < g\left( {x + 5} \right) \cr
& \Rightarrow f\left( {g\left( {x + 1} \right)} \right) > f\left( {g\left( {x + 5} \right)} \right) \cr
& {\text{Again }}x < x + 1 \Rightarrow g\left( {x + 1} \right) \Rightarrow f\left( {g\left( x \right)} \right) > f\left( {g\left( {x + 1} \right)} \right) \cr
& x < x + 2 \Rightarrow f\left( x \right) > f\left( {x + 2} \right) \Rightarrow g\left( {f\left( x \right)} \right) > g\left( {f\left( {x + 1} \right)} \right) \cr
& x > x - 2 \Rightarrow f\left( x \right) < f\left( {x - 2} \right) \Rightarrow g\left( {f\left( x \right)} \right) < g\left( {f\left( {x - 2} \right)} \right) \cr} $$
199.
If $$2a + 3b + 6c = 0,\left( {a,b,c \in R} \right)$$ then the quadratic equation $$a{x^2} + bx + c = 0$$ has
A
at least one root in [0, 1]
B
at least one root in [2, 3]
C
at least one root in [4, 5]
D
none of these
Answer :
at least one root in [0, 1]
$$\eqalign{
& {\text{Let}}\,f\left( x \right) = \frac{{a{x^3}}}{3} + \frac{{b{x^2}}}{2} + cx \Rightarrow f\left( 0 \right) = 0\,{\text{and}}\,f\left( 1 \right) \cr
& = \frac{a}{3} + \frac{b}{2} + c = \frac{{2a + 3b + 6c}}{6} = 0 \cr} $$
Also $$f(x)$$ is continuous and differentiable in [0, 1] and [0, 1[. So by Rolle’s theorem, $$f'\left( x \right) = 0.$$
i.e $$a{x^2} + bx + c = 0$$ has at least one root in [0, 1].
200.
Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in $$sq. m$$ ) of the flower-bed, is: