Application of Derivatives MCQ Questions & Answers in Calculus | Maths
Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
If $$A > 0,\,B > 0$$ and $$A + B = \frac{\pi }{3},$$ then the maximum value of $$\tan \,A\,\tan \,B$$ is :
A
$$\frac{1}{{\sqrt 3 }}$$
B
$$\frac{1}{3}$$
C
$$3$$
D
$$\sqrt 3 $$
Answer :
$$\frac{1}{3}$$
$$\eqalign{
& {\text{We have, }}A + B = \frac{\pi }{3} \cr
& \therefore \,B = \frac{\pi }{3} - A \Rightarrow \tan \,B = \frac{{\sqrt 3 - \tan \,A}}{{1 + \sqrt 3 \tan \,A}} \cr
& {\text{Let }}Z = \tan \,A.\frac{{\sqrt 3 - \tan \,A}}{{1 + \sqrt 3 \tan \,A}} \cr
& \Rightarrow Z = \frac{{\sqrt 3 \tan \,A - {{\tan }^2}A}}{{1 + \sqrt 3 \tan \,A}} \cr
& \Rightarrow Z = \frac{{\sqrt 3 x - {x^2}}}{{1 + \sqrt 3 x}},\,\,\,\,\,\,{\text{where}}\,x = \tan \,A \cr
& \Rightarrow \frac{{dZ}}{{dx}} = - \frac{{\left( {x + \sqrt 3 } \right)\left( {\sqrt 3 x - 1} \right)}}{{{{\left( {1 + \sqrt 3 x} \right)}^2}}} \cr
& {\text{For max }}Z,\,\frac{{dZ}}{{dx}} = 0 \Rightarrow x = \frac{1}{{\sqrt 3 }},\, - \sqrt 3 \cr} $$
$$x \ne - \sqrt 3 $$ because $$A + B = \frac{\pi }{3}$$ which implies that $$x = \tan \,A > 0.$$
It can be easily checked that $$\frac{{{d^2}Z}}{{d{x^2}}} < 0{\text{ for }}x = \frac{1}{{\sqrt 3 }}.$$
Hence, $$Z$$ is maximum for $$x = \frac{1}{{\sqrt 3 }}$$ i.e., $$\tan \,A = \frac{1}{{\sqrt 3 }}{\text{ or }}A = \frac{\pi }{6}$$
For this value of $$x,\,Z = \frac{1}{3}.$$
32.
The shortest distance between line $$y - x = 1$$ and curve $$x = {y^2}$$ is
A
$$\frac{{3\sqrt 2 }}{8}$$
B
$$\frac{8}{{3\sqrt 2 }}$$
C
$$\frac{4}{{\sqrt 3 }}$$
D
$$\frac{{\sqrt 3 }}{4}$$
Answer :
$$\frac{{3\sqrt 2 }}{8}$$
Shortest distance between two curve occurred along the common normal
Slope of normal to $${y^2} = x$$ at point $$P\left( {{t^2},t} \right)$$ is $$ - 2t$$ and slope of line $$y - x = 1$$ is 1.
As they are perpendicular to each other
$$\eqalign{
& \therefore \,\left( { - 2t} \right) = - 1 \Rightarrow t = \frac{1}{2} \cr
& \therefore \,P\left( {\frac{1}{4},\frac{1}{2}} \right) \cr} $$
and shortest distance $$ = \left| {\frac{{\frac{1}{2} - \frac{1}{4} - 1}}{{\sqrt 2 }}} \right|$$
So shortest distance between them is $$\frac{{3\sqrt 2 }}{8}$$
33.
If $$f$$ and $$g$$ are two increasing functions such that $$fog$$ is defined, then which one of the following is correct ?
A
$$fog$$ is always an increasing function
B
$$fog$$ is always a decreasing function
C
$$fog$$ is neither an increasing nor a decreasing function
D
None of the above
Answer :
$$fog$$ is always an increasing function
Product of two increasing function is always an increasing function.
$$\therefore \,fog$$ is always an increasing function.
34.
What is the interval in which the function $$f\left( x \right) = \sqrt {9 - {x^2}} $$ is increasing ? $$\left( {f\left( x \right) > 0} \right)$$
A
$$0 < x < 3$$
B
$$ - 3 < x < 0$$
C
$$0 < x < 9$$
D
$$ - 3 < x < 3$$
Answer :
$$ - 3 < x < 0$$
$$\eqalign{
& f\left( x \right) = \sqrt {9 - {x^2}} \cr
& f'\left( x \right) = \frac{1}{{2\sqrt {9 - {x^2}} }} \times \left( { - 2x} \right) = - \frac{x}{{\sqrt {9 - {x^2}} }} \cr} $$
For function to be increasing
$$ - \frac{x}{{\sqrt {9 - {x^2}} }} > 0{\text{ or }} - x > 0{\text{ or }}x < 0$$
but $$\sqrt {9 - {x^2}} $$ is defined only when
$$\eqalign{
& 9 - {x^2} > 0{\text{ or }}{x^2} - 9 < 0 \cr
& \left( {x + 3} \right)\left( {x - 3} \right) < 0 \cr
& {\text{i}}{\text{.e}}{\text{., }} - 3 < x < 3 \cr
& - 3 < x < 3 \cap x < 0\, \Rightarrow - 3 < x < 0 \cr} $$
35.
If $$\theta + \phi = \frac{\pi }{3}$$ then $$\sin \,\theta .\sin \,\phi $$ has a maximum value at $$\theta = ?$$
36.
If $$OT$$ is the perpendicular drawn from the origin to the tangent at any point $$t$$ to the curve $$x = a\,{\cos ^3}t,\,y = a\,{\sin ^3}t,$$ then $$OT$$ is equal to :
A
$$a\,\sin \,2t$$
B
$$\frac{a}{2}\sin \,2t$$
C
$$2a\,\sin \,2t$$
D
$$2a$$
Answer :
$$\frac{a}{2}\sin \,2t$$
$$\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{{3a\,{{\sin }^2}t\,\cos \,t}}{{ - 3a\,{{\cos }^2}t\,\sin \,t}} = - \tan \,t$$
$$\therefore $$ equation of the tangent at $$‘t’$$ is
$$\eqalign{
& y - a\,{\sin ^3}t = - \tan \,t\left( {x - a\,{{\cos }^3}t} \right) \cr
& \Rightarrow x\,\tan \,t + y - a\left( {{{\sin }^3}t + \sin \,t.{{\cos }^2}t} \right) = 0 \cr
& \Rightarrow x\,\tan \,t + y - a\,\sin \,t = 0 \cr} $$
$$\therefore $$ distance from the origin to this tangent
$$ = \frac{{\left| { - a\,\sin \,t} \right|}}{{\sqrt {{{\tan }^2}t + 1} }} = \frac{{a\,\sin \,t}}{{\sec \,t}} = \frac{a}{2}\sin \,2t$$
37.
Let $$f\left( x \right) = x\left| x \right|\,{\text{and}}\,g\left( x \right) = \sin x.$$ Statement-1 : $$gof$$ is differentiable at $$x = 0$$ and its derivative is continuous at that point. Statement-2 : $$gof$$ is twice differentiable at $$x = 0.$$
A
Statement-1 is true, Statement-2 is true;
Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true;
Statement-2 is a correct explanation for Statement-1.
Answer :
Statement-1 is true, Statement-2 is false.
$$\eqalign{
& {\text{Given}}\,{\text{that}}\,f\left( x \right) = x\left| x \right|\,{\text{and}}\,g\left( x \right) = \sin x \cr
& {\text{So}}\,{\text{that}}\,gof\left( x \right) = g\left( {f\left( x \right)} \right) = g\left( {x\left| x \right|} \right) = \sin x\left| x \right| \cr
& = \left\{ {_{\sin \left( {{x^2}} \right),{\text{ if }}x\, \geqslant \,0}^{\sin \left( { - {x^2}} \right),{\text{ if }}x\, < \,0}} \right. \cr
& = \left\{ {_{\sin {x^2},{\text{ if }}x\, \geqslant \,0}^{ - \sin {x^2},{\text{ if }}x\, < \,0}} \right. \cr
& \therefore \left( {gof} \right)'\left( x \right) = \left\{ {_{2x\,\cos {x^2},{\text{ if }}x \geqslant 0}^{ - 2x\cos {x^2},{\text{ if }}x < 0}} \right. \cr
& {\text{Here we observe}} \cr
& L\left( {{\text{go}}f} \right)'{\text{ }}\left( 0 \right) = 0 = R\left( {gof} \right)'\left( 0 \right){\text{ }} \cr
& \Rightarrow gof\,{\text{is differentiable at}}\,x = 0 \cr
& {\text{and}}\,{\left( {gof} \right)^\prime }\,{\text{is}}\,{\text{continuous at }}x{\text{ }} = {\text{ }}0 \cr
& {\text{Now}}\,{\left( {gof} \right)^{\prime \prime }}\left( x \right) = \left\{ {_{2\cos {x^2} - 4{x^2}\sin {x^2},\,x\, \geqslant \,0}^{ - 2\cos {x^2} + 4{x^2}\sin {x^2},\,x\, < \,0}} \right. \cr
& {\text{Here }}L{\left( {gof} \right)^{\prime \prime }}\left( 0 \right){\text{ }} = - 2{\text{ and }}R{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) = 2 \cr
& \because \,\,L{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) \ne R{\left( {gof} \right)^{\prime \prime }}\left( 0 \right) \cr
& \Rightarrow gof\left( x \right)\,{\text{is not twice differentiable at}}\,x = 0. \cr} $$
∴ Statement - 1 is true but statement -2 is false.
38.
$$P\left( {2,\,2} \right)$$ and $$Q\left( {\frac{1}{2},\, - 1} \right)$$ are two points on the parabola $${y^2} = 2x.$$ The coordinates of the point $$R$$ on the parabola, where the tangent to the curve is parallel to the chord $$PQ,$$ is :
A
$$\left( {\frac{5}{4},\,\sqrt {\frac{5}{2}} } \right)$$
39.
If $$\lambda ,\,\mu $$ be real numbers such that $${x^3} - \lambda {x^2} + \mu x - 6 = 0$$ has its roots real and positive then the minimum value of $$\mu $$ is :
A
$$3 \times \root 3 \of {36} $$
B
11
C
0
D
none of these
Answer :
$$3 \times \root 3 \of {36} $$
Let $$a,\,b,\,c$$ be the roots. Then $$ab + bc + ca = \mu ,\,abc = 6$$
$$\eqalign{
& {\text{Dividing, }}\,\,\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{\mu }{6} \cr
& {\text{AM}} > {\text{GM}}\,\,\,\,\,\,\, \Rightarrow \frac{{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}}{3} \geqslant \root 3 \of {\frac{1}{{abc}}} \cr
& {\text{or }}\mu \geqslant 18.\,\root 3 \of {\frac{1}{{abc}}} = {3.6^{\frac{2}{3}}} \cr} $$
$$\therefore $$ the minimum value of $$\mu = {3.6^{\frac{2}{3}}}$$
40.
The cost of running a bus from $$A$$ to $$B,$$ is $$Rs.\left( {av + \frac{b}{v}} \right)$$ where $$v\,km/h$$ is the average speed of the bus. When the bus travels at $$30\,km/h,$$ the cost comes out to be $$Rs.75$$ while at $$40\,km/h,$$ it is $$Rs.65.$$ Then the most economical speed (in $$km/h$$ ) of the bus is :
A
$$45$$
B
$$50$$
C
$$60$$
D
$$40$$
Answer :
$$60$$
Let cost $$C = av + \frac{b}{v}$$
According to given question,
$$\eqalign{
& 30a + \frac{b}{{30}} = 75.....\left( {\text{i}} \right) \cr
& 40a + \frac{b}{{40}} = 65.....\left( {{\text{ii}}} \right) \cr
& {\text{On solving }}\left( {\text{i}} \right){\text{and}}\left( {{\text{ii}}} \right){\text{, we get}}\,a = \frac{1}{2}{\text{and}}\,b = 1800 \cr
& {\text{Now, }}C = av + \frac{b}{v} \Rightarrow \frac{{dC}}{{dv}} = a - \frac{b}{{{v^2}}} \cr
& \frac{{dC}}{{dv}} = 0 \cr
& \Rightarrow a - \frac{b}{{{v^2}}} = 0 \cr
& \Rightarrow v = \sqrt {\frac{b}{a}} = \sqrt {3600} \cr
& \Rightarrow v = 60\,{\text{kmph}} \cr} $$