Application of Derivatives MCQ Questions & Answers in Calculus | Maths
Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
If the function $$y = \frac{{ax + b}}{{\left( {x - 1} \right)\left( {x - 4} \right)}}$$ has turning point at $$P\left( {2,\, - 1} \right),$$ then :
52.
If the curves $${y^2} = 6x,\,9{x^2} + b{y^2} = 16$$ intersect each other at right angles, then the value of $$b$$ is :
A
$$\frac{7}{2}$$
B
4
C
$$\frac{9}{2}$$
D
6
Answer :
$$\frac{9}{2}$$
Let curve intersect each other at point $$P\left( {{x_1},{y_1}} \right)$$
Since, point of intersection is on both the curves, then
$$y_1^2 = 6{x_1}\,......\left( {\text{i}} \right)\,\,\,\,\,{\text{and}}\,9x_1^2 + by_1^2 = 16\,......\left( {{\text{ii}}} \right)$$
Now, find the slope of tangent to both the curves at the point of intersection $$P\left( {{x_1},{y_1}} \right)$$
For slope of curves:
curve (i):
$${\left( {\frac{{dy}}{{dx}}} \right)_{\left( {{x_1},{y_1}} \right)}} = {m_1} = \frac{3}{{{y_1}}}$$
curve (ii):
$${\text{and}}\,{\left( {\frac{{dy}}{{dx}}} \right)_{\left( {{x_1},{y_1}} \right)}} = {m_2} = - \frac{{9{x_1}}}{{b{y_1}}}$$
Since, both the curves intersect each other at right angle then,
$$\eqalign{
& {m_1}{m_2} = - 1 \Rightarrow \frac{{27{x_1}}}{{by_{_1}^2}} = 1 \Rightarrow b = 27\frac{{{x_1}}}{{y_{_1}^2}} \cr
& \therefore \,\,{\text{from}}\,{\text{equation}}\,\left( {\text{i}} \right),\,b = 27 \times \frac{1}{6} = \frac{9}{2} \cr} $$
53.
The tangent to the curve $$y = {e^x}$$ drawn at the point $$\left( {c,{e^e}} \right)$$ intersects the line joining the points $$\left( {c - 1,{e^{c - 1}}} \right)$$ and $$\left( {c + 1,{e^{c + 1}}} \right)$$
54.
Let the function $$f\left( x \right)$$ be defined as below.
\[f\left( x \right) = \left\{ \begin{array}{l}
{\sin ^{ - 1}}\lambda + {x^2},\,0 < x < 1\\
2x,\,x \ge 1
\end{array} \right.\]
$$f\left( x \right)$$ can have a minimum at $$x=1$$ if the value of $$\lambda $$ is :
55.
Let $$f\left( x \right) = {x^3} - 6{x^2} + 12x - 3.$$ Then at $$x = 2,\,f\left( x \right)$$ has :
A
a maximum
B
a minimum
C
both a maximum and a minimum
D
neither a maximum nor a minimum
Answer :
neither a maximum nor a minimum
$$\eqalign{
& f'\left( x \right) = 3{x^2} - 12x + 12 = 3{\left( {x - 2} \right)^2} \cr
& \therefore \,f'\left( 2 \right) = 0\,; \cr
& f'\left( {2 - \in } \right) = 3{ \in ^2} > 0\,; \cr
& f'\left( {2 + \in } \right) = 3{ \in ^2} > 0 \cr} $$
Hence, $$f\left( x \right)$$ has neither a maximum nor a minimum at $$x=2.$$
56.
What is the product of two parts of 20, such that the product of one part and the cube of the other is maximum ?
A
75
B
91
C
84
D
96
Answer :
75
Let 20 be divided in two parts such that first part $$ = x$$
$$\therefore $$ Second part $$ = 20 – x$$
Now, assume that $$P = {x^3}\left( {20 - x} \right) = 20{x^3} - {x^4}$$
Now, $$\frac{{dP}}{{dx}} = 60{x^2} - 4{x^3}\,;\,{\text{and }}\frac{{{d^2}P}}{{d{x^2}}} = 120x - 12{x^2}$$
Put $$\frac{{dP}}{{dx}} = 0$$ for maxima or minima
$$\eqalign{
& \Rightarrow \frac{{dP}}{{dx}} = 0 \cr
& \Rightarrow 4{x^2}\left( {15 - x} \right) = 0 \cr
& \Rightarrow x = 0,\,x = 15 \cr
& \therefore \,{\left( {\frac{{{d^2}P}}{{d{x^2}}}} \right)_{x = 15}} = 120 \times 15 - 12 \times \left( {225} \right) \cr
& = 1800 - 2700 \cr
& = - 900 < 0 \cr} $$
$$\therefore \,P$$ is a maximum at $$x = 15.$$
$$\therefore $$ First part $$ = 15$$ and second part $$ = 20 – 15 = 5$$
Required product $$ = 15 \times 5 = 75$$
57.
If $$f\left( x \right) = x\,\ell n\,x,$$ then $$f\left( x \right)$$ attains minimum value at which one of the following points ?
A
$$x = {e^{ - 2}}$$
B
$$x = e$$
C
$$x = {e^{ - 1}}$$
D
$$x = 2{e^{ - 1}}$$
Answer :
$$x = {e^{ - 1}}$$
$$\eqalign{
& {\text{Let }}f\left( x \right) = x\,\ln \,x \cr
& f'\left( x \right) = \frac{x}{x} + \ln \,x = 1 + \ln \,x \cr
& {\text{Put }}f'\left( x \right) = 0 \Rightarrow 1 + \ln \,x \cr
& \Rightarrow \ln \,x = - 1 \Rightarrow x = {e^{ - 1}} \cr
& {\text{Now, }}f''\left( x \right) = \frac{1}{x} \cr
& {\left. {f''\left( x \right)} \right|_{x = {e^{ - 1}}}} = \frac{1}{{{e^{ - 1}}}} = e > 0 \cr} $$
Hence, $$f\left( x \right)$$ attains minimum value at $$x = {e^{ - 1}}.$$
58.
If $$q$$ denotes the acute angle between the curves, $$y = 10 - {x^2}$$ and $$y = 2 + {x^2}$$ at a point of their intersection, then $$\left| {\tan \theta } \right|$$ is equal to: