Application of Derivatives MCQ Questions & Answers in Calculus | Maths
Learn Application of Derivatives MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
The equation of normal to the curve $$y = {\left( {1 + x} \right)^y} + {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right){\text{ at }}x = 0{\text{ is :}}$$
A
$$x + y = 1$$
B
$$x - y = 1$$
C
$$x + y = - 1$$
D
$$x - y = - 1$$
Answer :
$$x + y = 1$$
At $$x = 0,\,y = 1$$
Hence, the point at which normal is drawn is $$P\left( {0,\,1} \right).$$
Differentiating the given equation w.r.t. $$x,$$ we have
$$\eqalign{
& {\left( {1 + x} \right)^y}\left\{ {\log \left( {1 + x} \right)\frac{{dy}}{{dx}} + \frac{y}{{1 + x}}} \right\} - \frac{{dy}}{{dx}} + \frac{1}{{\sqrt {1 - {{\sin }^4}x} }}2\,\sin \,x\,\cos \,x = 0 \cr
& {\text{or }}{\left( {\frac{{dy}}{{dx}}} \right)_{\left( {0,\, 1} \right)}} = \frac{{{{\left( {1 + 0} \right)}^1} \times \frac{1}{{1 + 0}} - \frac{{2\,\sin \,0}}{{\sqrt {1 - {{\sin }^2}0} }}}}{{1 - {{\left( {1 + 0} \right)}^1}\log \,1}} = 1 \cr} $$
$$\therefore $$ Slope of the normal $$=\, –1$$
Therefore, equation of the normal having slope $$–1$$ at point $$P\left( {0,\,1} \right)$$ is given by
$$y - 1 = - \left( {x - 0} \right){\text{ or }}x + y = 1$$
72.
The intercepts on $$x$$-axis made by tangents to the curve, $$y = \int\limits_0^x {\left| t \right|dt} ,x \in {\text{R,}}$$ which are parallel to the line $$y = 2x,$$ are equal to:
73.
Let $$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$ and let $$m\left( b \right)$$ be the minimum value of $$f\left( x \right).$$ As $$b$$ varies, the range of $$m\left( b \right)$$ is
A
$$\left[ {0,1} \right]$$
B
$$\left( {0,\frac{1}{2}} \right]$$
C
$$\left[ {\frac{1}{2},1} \right]$$
D
$$\left( {0,1} \right]$$
Answer :
$$\left( {0,1} \right]$$
$$f\left( x \right) = \left( {1 + {b^2}} \right){x^2} + 2bx + 1$$
It is a quadratic expression with coeff. of $${x^2} = 1 + {b^2} > 0.$$
$$\therefore f\left( x \right)$$ represents an upward parabola whose min value is $$\frac{{ - D}}{{4a}},D$$ being the discreminant.
$$\eqalign{
& \therefore m\left( b \right) = - \frac{{4{b^2} - 4\left( {1 + {b^2}} \right)}}{{4\left( {1 + {b^2}} \right)}} \Rightarrow m\left( b \right) = \frac{1}{{1 + {b^2}}} \cr
& {\text{For range of}}\,m\left( b \right): \cr
& \frac{1}{{1 + {b^2}}} > 0\,{\text{also}}\,{b^2} \geqslant 0 \Rightarrow 1 + {b^2} \geqslant 1 \cr
& \Rightarrow \frac{1}{{1 + {b^2}}} \leqslant 1.\,{\text{Thus}}\,m\left( b \right) = \left( {0,1} \right] \cr} $$
74.
Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx.} $$ Then $$f$$ decreases in the interval
75.
The equation of a curve is $$y = f\left( x \right).$$ The tangents at $$\left( {1,\,f\left( 1 \right)} \right),\,\left( {2,\,f\left( 2 \right)} \right)$$ and $$\left( {3,\,f\left( 3 \right)} \right)$$ make angles $$\frac{\pi }{6},\,\frac{\pi }{3}$$ and $$\frac{\pi }{4}$$ respectively with the positive direction of the x-axis. Then the value of $$\int_2^3 {f'\left( x \right)f''\left( x \right)dx + \int_1^3 {f''\left( x \right)dx} } $$ is equal to :
76.
If the normal to the curve $$y = f\left( x \right)$$ at the point (3, 4) makes an angle $$\frac{{3\pi }}{4}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$
78.
If $$m$$ be the slope of a tangent to the curve $${e^y} = 1 + {x^2}$$ then :
A
$$\left| m \right| > 1$$
B
$$m < 1$$
C
$$\left| m \right| < 1$$
D
$$\left| m \right| \leqslant 1$$
Answer :
$$\left| m \right| \leqslant 1$$
$$\eqalign{
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x,{\text{ }}{e^y}{\text{.}}\frac{{dy}}{{dx}}{\text{ }} = 2x \cr
& {\text{or,}}\,\,\frac{{dy}}{{dx}} = \frac{{2x}}{{1 + {x^2}}}\,\,\,\,\left( {\because {e^y} = 1 + {x^2}} \right) \cr
& \therefore m = \frac{{2x}}{{1 + {x^2}}}{\text{ or }}\left| m \right| = \frac{{2\left| x \right|}}{{1 + {{\left| x \right|}^2}}} \cr
& {\text{But }}1 + {\left| x \right|^2} - 2\left| x \right| = \left( {1 - {{\left| x \right|}^2}} \right) \geqslant 0 \cr
& \therefore 1 + {\left| x \right|^2} \geqslant 2\left| x \right| \cr
& \therefore \left| m \right| \leqslant 1 \cr} $$
79.
A stick of length $$a\,cm$$ rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of $$b\,cm/s$$ then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is :
A
$$\frac{b}{{\sqrt 2 }}{\text{ cm/s}}$$
B
$$\frac{b}{2}{\text{ cm/s}}$$
C
$$\frac{{ab}}{2}{\text{ cm/s}}$$
D
none of these
Answer :
$$\frac{b}{{\sqrt 2 }}{\text{ cm/s}}$$
Here, $$\frac{{dx}}{{dt}} = b{\text{ cm/s,}}\,\,\,{x^2} + {y^2} = {a^2}$$
Differentiating w.r.t. $$t,\,\,2x\frac{{dx}}{{dt}} + 2y\frac{{dy}}{{dt}} = 0$$
or $$2bx + 2y\frac{{dy}}{{dt}} = 0\,\,\,\,\, \Rightarrow \frac{{dy}}{{dt}} = - \frac{{bx}}{y}$$
The velocity of the middle point at time $$t$$
$$\eqalign{
& = \sqrt {{{\left\{ {\frac{{d\left( {\frac{x}{2}} \right)}}{{dt}}} \right\}}^2} + {{\left\{ {\frac{{d\left( {\frac{y}{2}} \right)}}{{dt}}} \right\}}^2}} \cr
& = \frac{1}{2}\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}} \cr
& = \frac{1}{2}\sqrt {{b^2} + \frac{{{b^2}{x^2}}}{{{y^2}}}} \cr} $$
When the stick is equally inclined to the wall and to the floor, $$x=y$$
$$\therefore $$ the required velocity $$ = \frac{1}{2}\sqrt {{b^2} + {b^2}} = \frac{b}{{\sqrt 2 }}$$
80.
If $$f\left( x \right)$$ is a non-zero polynomial of degree four, having local extreme points at $$x = - 1,0,1;$$ then the set $$S = \left\{ {x\,R:f\left( x \right) = f\left( 0 \right)} \right\}$$ contains exactly:
A
four irrational numbers.
B
four rational numbers.
C
two irrational and two rational numbers.
D
two irrational and one rational number.
Answer :
two irrational and one rational number.
Since, function $$f\left( x \right)$$ have local extreme points at $$x = - 1,0,1.$$
Then
$$\eqalign{
& f\left( x \right) = K\left( {x + 1} \right)x\left( {x - 1} \right) = K\left( {{x^3} - x} \right) \cr
& \Rightarrow f\left( x \right) = K\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right) + C{\text{ (using integration)}} \cr
& \Rightarrow f\left( 0 \right) = C \cr
& \because f\left( x \right) = f\left( 0 \right) \Rightarrow \frac{{{x^2}}}{2}\left( {\frac{{{x^2}}}{2} - 1} \right) = 0 \cr
& \Rightarrow \frac{{{x^2}}}{2}\left( {\frac{{{x^2}}}{2} - 1} \right) = 0 \Rightarrow x = 0,0,\sqrt 2 , - \sqrt 2 \cr
& \therefore S = \left\{ {0, - \sqrt 2 ,\sqrt 2 } \right\} \cr} $$