Application of Integration MCQ Questions & Answers in Calculus | Maths
Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
1.
The area bounded by $$f\left( x \right) = {x^2},\,0 \leqslant x \leqslant 1,\,g\left( x \right) = - x + 2,\,1 \leqslant x \leqslant 2$$ and $$x$$-axis is :
A
$$\frac{3}{2}$$
B
$$\frac{4}{3}$$
C
$$\frac{8}{3}$$
D
None of these
Answer :
None of these
Required area $$=$$ Area of $$OAB\,+$$ Area of $$ABC$$
Now, Area of $$OAB$$
$$\eqalign{
& = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {g\left( x \right)dx} \cr
& = \int\limits_0^1 {{x^2}dx} + \int\limits_1^2 {\left( { - x + 2} \right)dx} \cr
& = \left. {\frac{{{x^3}}}{3}} \right|_0^1 + \left[ {\frac{{ - {x^2}}}{2} + 2x} \right]_1^2 \cr
& = \frac{1}{3} + \left[ {\left( {\frac{{ - 4}}{2} + 4} \right) - \left( {\frac{{ - 1}}{2} + 2} \right)} \right] \cr
& = \frac{1}{3} + \frac{1}{2} \cr
& = \frac{5}{6}{\text{ sq}}{\text{. unit}} \cr} $$
2.
$$\int_0^{2\pi } {\frac{{x{{\sin }^{2n}}x}}{{{{\sin }^{2n}}x + {{\cos }^{2n}}x}}dx,\,n > 0} $$ is equal to :
3.
Let $$I = \int_{ - a}^a {\left( {p{{\tan }^3}x + q{{\cos }^2}x + r\sin \,x} \right)dx,} $$ where $$p,\,q,\,r$$ are arbitrary constants. The numerical value of $$I$$ depends on :
A
$$p,\,q,\,r,\,a$$
B
$$q,\,r,\,a$$
C
$$q,\,a$$
D
$$p,\,r,\,a$$
Answer :
$$q,\,a$$
$$I = p\int_{ - a}^a {{{\tan }^3}x\,dx} + q\int_{ - a}^a {{{\cos }^2}x\,dx} + r\int_{ - a}^a {\sin \,x\,dx} $$
$$ = p \times 0 + 2q\int_0^a {{{\cos }^2}x\,dx} + r \times 0,$$ because $${\tan ^3}x$$ and $$\sin \,x$$ are odd functions, and $${\cos ^2}x$$ is an even function.
4.
Let $$f\left( x \right)$$ be a given integrable function such that $$f\left( {x + k} \right) = f\left( x \right)$$ for all $$x\, \in \,R.$$ Then $$\int_a^{a + k} {f\left( x \right)dx} $$ depends for its value on :
A
$$a$$ only
B
$$k$$ only
C
both $$a$$ and $$k$$
D
neither $$a$$ nor $$k$$
Answer :
$$k$$ only
$$\eqalign{
& \int_a^{a + k} {f\left( x \right)} dx = \int_0^{a + k} {f\left( x \right)} dx - \int_0^a {f\left( x \right)} dx \cr
& = \int_0^k {f\left( x \right)} dx + \int_k^{a + k} {f\left( x \right)} dx - \int_0^a {f\left( x \right)} dx \cr
& {\text{For the second integral, put }}x = z + k \cr
& {\text{Then }}\int_k^{a + k} {f\left( x \right)} dx = \int_0^a {f\left( {z + k} \right)} dz = \int_0^a {f\left( z \right)} dz \cr
& \therefore \int_a^{a + k} {f\left( x \right)} dx = \int_0^k {f\left( x \right)} dx + \int_0^a {f\left( x \right)} dx - \int_0^a {f\left( x \right)} dx \cr
& = \int_0^k {f\left( x \right)} dx \cr
& {\text{which depends on }}k{\text{ but not on }}a. \cr} $$
5.
The area of the region bounded by the curves $$y = \left| {x - 2} \right|,\,x = 1,\,x = 3$$ and the x-axis is-
A
$$4$$
B
$$2$$
C
$$3$$
D
$$1$$
Answer :
$$1$$
The required area is shown by shaded region
$$\eqalign{
& A = \int\limits_1^3 {\left| {x - 2} \right|dx} \,\,\, = 2\int\limits_2^3 {\left( {x - 2} \right)dx} \cr
& = 2\left[ {\frac{{{x^2}}}{2} - 2x} \right]_2^3\,\,\, = 1 \cr} $$
6.
The area of the plane region bounded by the curves $$x + 2{y^2} = 0$$ and $$x + 3{y^2} = 1$$ is equal to-
A
$$\frac{5}{3}$$
B
$$\frac{1}{3}$$
C
$$\frac{2}{3}$$
D
$$\frac{4}{3}$$
Answer :
$$\frac{4}{3}$$
$$x + 2{y^2} = 0\,\,\, \Rightarrow {y^2} = - \frac{x}{2}$$
[ Left handed parabola with vertex at $$\left( {0,\,0} \right)$$ ]
$$x + 3{y^2} = 1\,\,\, \Rightarrow {y^2} = - \frac{1}{3}\left( {x - 1} \right)$$
[Left handed parabola with vertex at $$\left( {1,\,0} \right)$$ ]
Solving the two equations we get the points of intersection as $$\left( { - 2,\,1} \right),\left( { - 2 - 1} \right)$$
The required area is $$ACBDA,$$ given by
$$\eqalign{
& = \left| {\int\limits_{ - 1}^1 {\left( {1 - 3{y^2} - 2{y^2}} \right)dy} } \right| \cr
& = \left| {\left[ {y - \frac{{5{y^3}}}{3}} \right]_{ - 1}^1} \right| \cr
& = \left| {\left( {1 - \frac{5}{3}} \right) - \left( { - 1 + \frac{5}{3}} \right)} \right| \cr
& = 2 \times \frac{2}{3} = \frac{4}{3}\,{\text{sq}}{\text{. units}} \cr} $$
7.
The value of $$\int_{ - 2}^2 {\frac{{{{\sin }^2}x}}{{\left[ {\frac{x}{\pi }} \right] + \frac{1}{2}}}dx,} $$ where $$\left[ x \right] = $$ the greatest integer greater than or equal to $$x,$$ is :