Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. The area of the region $$\left\{ {x,\,y\,:\,xy \leqslant 8,\,1 \leqslant y \leqslant {x^2}} \right\}$$      is-

A $$8\,{\log _e}2 - \frac{{14}}{3}$$
B $$16\,{\log _e}2 - \frac{{14}}{3}$$
C $$8\,{\log _e}2 - \frac{7}{3}$$
D $$16\,{\log _e}2 - 6$$
Answer :   $$16\,{\log _e}2 - \frac{{14}}{3}$$

102. The area bounded by the curve $$y = x{\left( {3 - x} \right)^2},$$    the $$x$$-axis and the ordinates of the maximum and minimum points of the curve, is given by :

A 1 sq. unit
B 2 sq. units
C 4 sq. units
D None of these
Answer :   4 sq. units

103. Let $$f$$ be a positive function. If $${I_1} = \int_{1 - k}^k {xf\left\{ {x\left( {1 - x} \right)} \right\}dx,\,{I_2}} = \int_{1 - k}^k {f\left\{ {x\left( {1 - x} \right)} \right\}dx,} $$           where $$2k - 1 > 0,$$   then $$\frac{{{I_1}}}{{{I_2}}}$$  is :

A 2
B $$k$$
C $$\frac{1}{2}$$
D 1
Answer :   $$\frac{1}{2}$$

104. $$\int_{ - 1}^1 {\left( {x - \left[ {2x} \right]} \right)dx} $$    is equal to :

A 1
B 0
C 2
D 4
Answer :   1

105. The area of the region between the curves $$y = \sqrt {\frac{{1 + \sin \,x}}{{\cos \,x}}} $$    and $$y = \sqrt {\frac{{1 - \sin \,x}}{{\cos \,x}}} $$    bounded by the lines $$x = 0$$   and $$x = \frac{\pi }{4}$$  is-

A $$\int\limits_0^{\sqrt 2 - 1} {\frac{t}{{\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
B $$\int\limits_0^{\sqrt 2 - 1} {\frac{{4t}}{{\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
C $$\int\limits_0^{\sqrt 2 + 1} {\frac{{4t}}{{\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
D $$\int\limits_0^{\sqrt 2 + 1} {\frac{t}{{\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
Answer :   $$\int\limits_0^{\sqrt 2 - 1} {\frac{{4t}}{{\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$

106. The area of the region bounded by the pairs of lines $$y = \left| {x - 1} \right|$$   and $$y = 3 - \left| x \right|$$   is :

A $$3\,{\text{uni}}{{\text{t}}^2}$$
B $$4\,{\text{uni}}{{\text{t}}^2}$$
C $$6\,{\text{uni}}{{\text{t}}^2}$$
D $$2\,{\text{uni}}{{\text{t}}^2}$$
Answer :   $$4\,{\text{uni}}{{\text{t}}^2}$$

107. If $$y = \int_0^x {\sqrt {\sin \,x} \,dx} $$     then the value of $$\frac{{dy}}{{dx}}$$  at $$x = \frac{\pi }{2}$$  is :

A 0
B 1
C $$-1$$
D none of these
Answer :   1

108. The area of the region $$R = \left\{ {\left( {x,\,y} \right):\left| x \right| \leqslant \left| y \right|{\text{ and }}{x^2} + {y^2} \leqslant 1} \right\}$$        is :

A $$\frac{{3\pi }}{8}{\text{ sq}}{\text{. unit}}$$
B $$\frac{{5\pi }}{8}{\text{ sq}}{\text{. unit}}$$
C $$\frac{\pi }{2}{\text{ sq}}{\text{. unit}}$$
D $$\frac{\pi }{8}{\text{ sq}}{\text{. unit}}$$
Answer :   $$\frac{\pi }{2}{\text{ sq}}{\text{. unit}}$$

109. If $$y = \int_x^{{x^2}} {\sqrt {5 - {t^2}} dt} $$     then the value of $$\frac{{dy}}{{dx}}$$  at $$x = \sqrt 2 $$   is :

A $$1 - \sqrt 3 $$
B $$\sqrt 3 \left( {2\sqrt 6 - 1} \right)$$
C $$2\sqrt 2 - \sqrt 3 $$
D none of these
Answer :   $$2\sqrt 2 - \sqrt 3 $$

110. Let $$f$$ and $$g$$ be two continuous functions. Then $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left\{ {f\left( x \right) + f\left( { - x} \right)} \right\}\left\{ {g\left( x \right) - g\left( { - x} \right)} \right\}} dx$$         is equal to :

A $$\pi $$
B 1
C $$-1$$
D 0
Answer :   0