Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. What is the area of the region enclosed by $$y = 2\left| x \right|$$   and $$y = 4\,?$$

A 2 square units
B 4 square units
C 8 square units
D 16 square units
Answer :   8 square units

112. The area of the region (in sq. units), in the first quadrant bounded by the parabola $$y = 9{x^2}$$   and the lines $$x = 0,\, y = 1$$   and $$y = 4,$$  is :

A $$\frac{7}{9}$$
B $$\frac{{14}}{3}$$
C $$\frac{7}{3}$$
D $$\frac{{14}}{9}$$
Answer :   $$\frac{{14}}{9}$$

113. The area bounded by $$y = {x^2} + 3$$   and $$y = 2x + 3$$   is (in $$sq.$$  units)

A $$\frac{{12}}{7}$$
B $$\frac{4}{3}$$
C $$\frac{3}{4}$$
D $$\frac{8}{3}$$
Answer :   $$\frac{4}{3}$$

114. The area bounded by the curves $$y = \ell n\,x,\,y = \ell n\left| x \right|,\,y = \left| {\ell n\,x} \right|$$       and $$y = \left| {\ell n\left| x \right|} \right|$$   is :

A 4 sq. units
B 6 sq. units
C 10 sq. units
D None of these
Answer :   4 sq. units

115. The equation $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{4}} {\left( {\lambda \left| {\sin \,x} \right| + \frac{{\mu \sin \,x}}{{1 + \cos \,x}} + \nu } \right)dx = 0,} $$         where $$\lambda ,\,\mu ,\,\nu $$  are constants, gives a relation between :

A $$\lambda ,\,\mu \,{\text{and }}\nu $$
B $$\lambda \,{\text{and }}\nu $$
C $$\lambda \,\,{\text{and }}\mu $$
D $$\mu \,\,{\text{and }}\nu $$
Answer :   $$\lambda \,{\text{and }}\nu $$

116. The value of $$c + 2$$  for which the area of the figure bounded by the curve $$y = 8{x^2} - {x^5},$$   the straight lines $$x = 1$$  and $$x = c$$  and $$x$$-axis is equal to $$\frac{{16}}{3},$$ is :

A $$1$$
B $$3$$
C $$ - 1$$
D $$4$$
Answer :   $$1$$

117. If $$\int_0^x {f\left( t \right)dt = x + \int_x^1 {tf\left( t \right)dt} } $$       then the value of $$f\left( 1 \right)$$  is :

A $$\frac{1}{2}$$
B 0
C 1
D $$ - \frac{1}{2}$$
Answer :   $$\frac{1}{2}$$

118. The area bounded by the curve $$f\left( x \right) = c{e^x}\left( {c > 0} \right),$$     the $$x$$-axis and the two ordinates $$x=p$$  and $$x=q$$  is proportional to :

A $$f\left( p \right).f\left( q \right)$$
B $$\left| {f\left( p \right) - f\left( q \right)} \right|$$
C $$f\left( p \right) + f\left( q \right)$$
D $$\sqrt {f\left( p \right)f\left( q \right)} $$
Answer :   $$\left| {f\left( p \right) - f\left( q \right)} \right|$$

119. The area of the region bounded by the curves $$y = \left| {x - 1} \right|$$   and $$y = 3 - \left| x \right|$$   is-

A $$6$$ square units
B $$2$$ square units
C $$3$$ square units
D $$4$$ square units
Answer :   $$4$$ square units

120. The area (in sq. units) of the region described by $$\left\{ {\left( {x,\,y} \right):{y^2} \leqslant 2x\,\,{\text{and}}\,y \geqslant 4x - 1} \right\}$$       is-

A $$\frac{{15}}{{64}}$$
B $$\frac{{9}}{{32}}$$
C $$\frac{{7}}{{32}}$$
D $$\frac{{5}}{{64}}$$
Answer :   $$\frac{{9}}{{32}}$$