112.
The area of the region (in sq. units), in the first quadrant bounded by the parabola $$y = 9{x^2}$$ and the lines $$x = 0,\, y = 1$$ and $$y = 4,$$ is :
113.
The area bounded by $$y = {x^2} + 3$$ and $$y = 2x + 3$$ is (in $$sq.$$ units)
A
$$\frac{{12}}{7}$$
B
$$\frac{4}{3}$$
C
$$\frac{3}{4}$$
D
$$\frac{8}{3}$$
Answer :
$$\frac{4}{3}$$
Given curves are $$y = {x^2} + 3$$ and $$y = 2x + 3$$ points of intersection are $$\left( {0,\,3} \right)$$ and $$\left( {2,\,7} \right).$$
$$\therefore $$ Required area
$$ = \left| {\int\limits_0^2 {\left( {{x^2} - 2x} \right)dx} } \right| = \left| {\frac{{{x^3}}}{3} - \frac{{2{x^2}}}{2}} \right|_0^2 = \left| {\frac{8}{3} - 4} \right| = \frac{4}{3}{\text{ sq}}{\text{. unit}}$$
114.
The area bounded by the curves $$y = \ell n\,x,\,y = \ell n\left| x \right|,\,y = \left| {\ell n\,x} \right|$$ and $$y = \left| {\ell n\left| x \right|} \right|$$ is :
A
4 sq. units
B
6 sq. units
C
10 sq. units
D
None of these
Answer :
4 sq. units
First we draw each curve as separate graph
Clearly the bounded area is as shown in the following figure.
Required area
$$\eqalign{
& = 4\int\limits_0^1 {\left( { - \ell n\,x} \right)} dx \cr
& = - 4\left[ {x\,\ell n\,x - x} \right]_0^1 \cr
& = 4{\text{ sq}}{\text{. units}} \cr} $$
115.
The equation $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{4}} {\left( {\lambda \left| {\sin \,x} \right| + \frac{{\mu \sin \,x}}{{1 + \cos \,x}} + \nu } \right)dx = 0,} $$ where $$\lambda ,\,\mu ,\,\nu $$ are constants, gives a relation between :
A
$$\lambda ,\,\mu \,{\text{and }}\nu $$
B
$$\lambda \,{\text{and }}\nu $$
C
$$\lambda \,\,{\text{and }}\mu $$
D
$$\mu \,\,{\text{and }}\nu $$
Answer :
$$\lambda \,{\text{and }}\nu $$
$$\frac{{\mu \sin \,x}}{{1 + \cos \,x}}$$ is an odd function. So, $$\int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{{\mu \sin \,x}}{{1 + \cos \,x}}dx = 0.} $$
$$\therefore $$ the equation is $$\lambda \int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left| {\sin \,x} \right|dx + \nu \int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {dx = 0} } $$
Or $$2\lambda \int_0^{\frac{\pi }{4}} {\left| {\sin \,x} \right|dx + \nu .\frac{\pi }{2} = 0,} $$ which is a relation between $$\lambda ,\,\nu .$$
116.
The value of $$c + 2$$ for which the area of the figure bounded by the curve $$y = 8{x^2} - {x^5},$$ the straight lines $$x = 1$$ and $$x = c$$ and $$x$$-axis is equal to $$\frac{{16}}{3},$$ is :
117.
If $$\int_0^x {f\left( t \right)dt = x + \int_x^1 {tf\left( t \right)dt} } $$ then the value of $$f\left( 1 \right)$$ is :
A
$$\frac{1}{2}$$
B
0
C
1
D
$$ - \frac{1}{2}$$
Answer :
$$\frac{1}{2}$$
$$\eqalign{
& \int_0^x {f\left( t \right)dt} + \int_1^x {tf\left( t \right)dt = x} \cr
& {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x \cr
& f\left( x \right) + xf\left( x \right) = 1 \cr
& \therefore f\left( x \right) = \frac{1}{{1 + x}} \cr
& {\text{So, }}f\left( 1 \right) = \frac{1}{2} \cr} $$
118.
The area bounded by the curve $$f\left( x \right) = c{e^x}\left( {c > 0} \right),$$ the $$x$$-axis and the two ordinates $$x=p$$ and $$x=q$$ is proportional to :
A
$$f\left( p \right).f\left( q \right)$$
B
$$\left| {f\left( p \right) - f\left( q \right)} \right|$$
120.
The area (in sq. units) of the region described by $$\left\{ {\left( {x,\,y} \right):{y^2} \leqslant 2x\,\,{\text{and}}\,y \geqslant 4x - 1} \right\}$$ is-