Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

151. Let $$f\left( x \right)$$  be a continuous function such that the area bounded by the curve $$y = f\left( x \right),$$   the $$x$$-axis and the two ordinates $$x=0$$  and $$x=a$$  is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a.$$     Then $$f\left( {\frac{\pi }{2}} \right)$$  is :

A $$\frac{1}{2}$$
B $$\frac{{{\pi ^2}}}{8} + \frac{\pi }{4}$$
C $$\frac{{\pi + 1}}{2}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{1}{2}$$

152. The area of the smaller segment cut off from the circle $${x^2} + {y^2} = 9$$   by $$x = 1$$  is :

A $$\frac{1}{2}\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$
B $$\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$
C $$\left( {\sqrt 8 - 9\,{{\sec }^{ - 1}}3} \right){\text{sq}}{\text{.unit}}$$
D None of the above
Answer :   $$\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$

153. If the ordinate $$x = a$$  divides the area bounded by $$x$$-axis, part of the curve $$y = 1 + \frac{8}{{{x^2}}}$$   and the ordinates $$x = 2,\,x = 4$$    into two equal parts, then $$a$$ is equal to :

A $$\sqrt 2 $$
B $$2\sqrt 2 $$
C $$3\sqrt 2 $$
D None of these
Answer :   $$2\sqrt 2 $$

154. The area of the region enclosed by the curves $$y = x,\,x = e,\,y = \frac{1}{x}$$     and the positive $$x$$-axis is

A $$1$$ square unit
B $$\frac{3}{2}$$ square unit
C $$\frac{5}{2}$$ square unit
D $$\frac{1}{2}$$ square unit
Answer :   $$\frac{3}{2}$$ square unit

155. Let $$f\left( x \right)$$  be a continuous function such that the area bounded by the curve $$y = f\left( x \right),\,x$$   -axis and the lines $$x = 0$$  and $$x = a$$  is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a,$$     then $$f\left( {\frac{\pi }{2}} \right) = ?$$

A $$1$$
B $$\frac{1}{2}$$
C $$\frac{1}{3}$$
D None of these
Answer :   $$\frac{1}{2}$$

156. Area bounded by the curves $$y = {e^x},\,y = {e^{ - x}}$$    and the straight line $$x = 1$$  is (in sq. units)

A $$e + \frac{1}{e}$$
B $$e + \frac{1}{e} + 2$$
C $$e + \frac{1}{e} - 2$$
D $$e - \frac{1}{e} + 2$$
Answer :   $$e + \frac{1}{e} - 2$$