Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. $$\int_0^{100\pi } {\sqrt {1 + \cos \,2x} } \,dx$$     is equal to :

A 0
B $$100\sqrt 2 $$
C $$200\sqrt 2 $$
D 100
Answer :   $$200\sqrt 2 $$

22. The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):x \geqslant 0,\,x + y \leqslant 3,\,{x^2} \leqslant 4y\,\,{\text{and}}\,y \leqslant 1 + \sqrt x } \right\}$$           is :

A $$\frac{5}{2}$$
B $$\frac{59}{12}$$
C $$\frac{3}{2}$$
D $$\frac{7}{3}$$
Answer :   $$\frac{5}{2}$$

23. The area bounded by the curve $$x = {\cos ^{ - 1}}y$$    and the lines $$\left| x \right| = 1$$  is :

A $$\sin \,1$$
B $$\cos \,1$$
C $$2\sin \,1$$
D $$2\cos \,1$$
Answer :   $$2\sin \,1$$

24. If $$x\, \in \left( {2n\pi ,\,2n\pi + \pi } \right)$$     then $$\int_0^x {\left[ {\sin \,x} \right]dx,} $$    where $$\left[ x \right] = $$  greatest integer less than or equal to $$x,$$ is equal to :

A $$ - \pi $$
B $$ - n\pi $$
C 0
D none of these
Answer :   $$ - n\pi $$

25. The area bounded by the curve $${y^2}\left( {2a - x} \right) = {x^3}$$     and the line $$x = 2a$$   is :

A $$3\pi {a^2}{\text{ sq}}{\text{. units}}$$
B $$\frac{{3\pi {a^2}}}{2}{\text{sq}}{\text{. units}}$$
C $$\frac{{3\pi {a^2}}}{4}{\text{sq}}{\text{. units}}$$
D $$\frac{{6\pi {a^2}}}{5}{\text{sq}}{\text{. units}}$$
Answer :   $$\frac{{3\pi {a^2}}}{2}{\text{sq}}{\text{. units}}$$

26. The value of $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{dx}}{{{{\sin }^3}x + \sin \,x}}} $$    is :

A 0
B 2
C 1
D none of these
Answer :   0

27. The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):{y^2} \geqslant 2x\,\,{\text{and}}\,{x^2} + {y^2} \leqslant 4x,\,x \geqslant 0,\,y \geqslant 0} \right\}$$          is :

A $$\pi - \frac{{4\sqrt 2 }}{3}$$
B $$\frac{\pi }{2} - \frac{{2\sqrt 2 }}{3}$$
C $$\pi - \frac{4}{3}$$
D $$\pi - \frac{8}{3}$$
Answer :   $$\pi - \frac{8}{3}$$

28. The area bounded by the curves $$y = \cos \,x$$   and $$y = \sin \,x$$   between the ordinates $$x = 0$$   and $$x = \frac{{3\pi }}{2}$$   is -

A $$4\sqrt 2 + 2$$
B $$4\sqrt 2 - 1$$
C $$4\sqrt 2 + 1$$
D $$4\sqrt 2 - 2$$
Answer :   $$4\sqrt 2 - 2$$

29. $$\int_0^{\frac{\pi }{2}} {\frac{{f\left( x \right)}}{{f\left( x \right) + f\left( {\frac{\pi }{2} - x} \right)}}dx,} $$      where $$f\left( x \right) \ne - f\left( {\frac{\pi }{2} - x} \right)$$    for $$0 \leqslant x \leqslant \frac{\pi }{2},$$   has the value :

A $$f\left( 0 \right)$$
B $$f\left( {\frac{\pi }{2}} \right)$$
C $$\frac{\pi }{2}$$
D none of these
Answer :   none of these

30. The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis, and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is :

A $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B $$\sin \left( {3x + 4} \right)$$
C $$\sin \left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D None of these
Answer :   $$\sin \left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$