22.
The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):x \geqslant 0,\,x + y \leqslant 3,\,{x^2} \leqslant 4y\,\,{\text{and}}\,y \leqslant 1 + \sqrt x } \right\}$$ is :
24.
If $$x\, \in \left( {2n\pi ,\,2n\pi + \pi } \right)$$ then $$\int_0^x {\left[ {\sin \,x} \right]dx,} $$ where $$\left[ x \right] = $$ greatest integer less than or equal to $$x,$$ is equal to :
Let the equation of curve $${y^2}\left( {2a - x} \right) = {x^3}......\left( {\text{i}} \right)$$
and equation of line $$x = 2a......\left( {{\text{ii}}} \right)$$
The given curve is symmetrical about $$x$$-axis and passes through origin.
From $$\left( {\text{i}} \right)$$ we have $${y^2} = \frac{{{x^3}}}{{2a - x}}$$
But $$\frac{{{x^3}}}{{2a - x}} < 0$$ for $$x > 2a$$ and $$x < 0$$
So, curve does not lie in the portion $$x > 2a$$ and $$x < 0,$$ therefore curve lies in $$0 \leqslant x \leqslant 2a.$$
$$\therefore $$ Area bounded by the curve and line $$ = \int\limits_0^{2a} {y\,dx} = \int\limits_0^{2a} {\frac{{{x^{\frac{3}{2}}}}}{{\sqrt {2a} - x}}} dx$$
Put $$x = 2a\,{\sin ^2}\theta {\text{ and }}dx = 4a\,\sin \,\theta \,\cos \,\theta \,d\theta $$
$$\eqalign{
& \therefore \,I = \int\limits_0^{\frac{\pi }{2}} {8{a^2}{{\sin }^4}\theta \,d\theta } \cr
& = 8{a^2}\left[ {\frac{3}{4}.\frac{1}{2}.\frac{\pi }{2}} \right] \cr
& = \frac{{3\pi {a^2}}}{2}{\text{sq}}{\text{. units}} \cr} $$
26.
The value of $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{dx}}{{{{\sin }^3}x + \sin \,x}}} $$ is :
27.
The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):{y^2} \geqslant 2x\,\,{\text{and}}\,{x^2} + {y^2} \leqslant 4x,\,x \geqslant 0,\,y \geqslant 0} \right\}$$ is :
A
$$\pi - \frac{{4\sqrt 2 }}{3}$$
B
$$\frac{\pi }{2} - \frac{{2\sqrt 2 }}{3}$$
C
$$\pi - \frac{4}{3}$$
D
$$\pi - \frac{8}{3}$$
Answer :
$$\pi - \frac{8}{3}$$
Points of intersection of the two curves are $$\left( {0,\,0} \right),\,\left( {2,\,2} \right)$$ and $$\left( {2,\, - 2} \right)$$
Area $$=$$ Area $$\left( {OAB} \right) - $$ area under parabola $$\left( {0{\text{ to }}2} \right)$$
$$\eqalign{
& = \frac{{\pi \times {{\left( 2 \right)}^2}}}{4} - \int\limits_0^2 {\sqrt 2 } \sqrt x \,dx \cr
& = \pi - \frac{8}{3} \cr} $$
28.
The area bounded by the curves $$y = \cos \,x$$ and $$y = \sin \,x$$ between the ordinates $$x = 0$$ and $$x = \frac{{3\pi }}{2}$$ is -
29.
$$\int_0^{\frac{\pi }{2}} {\frac{{f\left( x \right)}}{{f\left( x \right) + f\left( {\frac{\pi }{2} - x} \right)}}dx,} $$ where $$f\left( x \right) \ne - f\left( {\frac{\pi }{2} - x} \right)$$ for $$0 \leqslant x \leqslant \frac{\pi }{2},$$ has the value :
A
$$f\left( 0 \right)$$
B
$$f\left( {\frac{\pi }{2}} \right)$$
C
$$\frac{\pi }{2}$$
D
none of these
Answer :
none of these
$$\eqalign{
& I = \int_0^{\frac{\pi }{2}} {\frac{{f\left( x \right)dx}}{{f\left( x \right) + f\left( {\frac{\pi }{2} - x} \right)}}} \cr
& \,\,\,\,\,\, = \int_0^{\frac{\pi }{2}} {\frac{{f\left( {\frac{\pi }{2} - x} \right)}}{{f\left( {\frac{\pi }{2} - x} \right) + f\left( x \right)}}dx} \cr
& \left( {{\text{using }}\int_0^a {f\left( x \right)dx = } \int_0^a {f\left( {a - x} \right)dx} } \right) \cr
& \therefore I + I = \int_0^{\frac{\pi }{2}} {\frac{{f\left( x \right) + f\left( {\frac{\pi }{2} - x} \right)}}{{f\left( x \right) + f\left( {\frac{\pi }{2} - x} \right)}}} dx\, = \int_0^{\frac{\pi }{2}} {dx} \, = \left[ x \right]_0^{\frac{\pi }{2}}\, = \frac{\pi }{2} \cr
& \therefore I = \frac{\pi }{4} \cr} $$
30.
The area bounded by the curves $$y = f\left( x \right),$$ the $$x$$-axis, and the ordinates $$x = 1$$ and $$x = b$$ is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$ Then $$f\left( x \right)$$ is :