32.
The area of the region bounded by the parabola $${\left( {y - 2} \right)^2} = x - 1,$$ the tangent of the parabola at the point $$\left( {2,\,3} \right)$$ and the $$x$$-axis is :
A
6
B
9
C
12
D
3
Answer :
9
The given parabola is $${\left( {y - 2} \right)^2} = x - 1$$
Vertex $$\left( {1,\,2} \right)$$ and it meets $$x$$-axis at $$\left( {5,\,0} \right)$$
Also it gives $${y^2} - 4y - x + 5 = 0$$
So, that equation of tangent to the parabola at $$\left( {2,\,3} \right)$$ is
$$\eqalign{
& y.3 - 2\left( {y + 3} \right) - \frac{1}{2}\left( {x + 2} \right) + 5 = 0 \cr
& {\text{or }}x - 2y + 4 = 0\,\,{\text{which meets }}x{\text{ - axis at }}\left( { - 4,\,0} \right) \cr} $$
In the figure shaded area is the required area.
Let us draw $$PD$$ perpendicular to $$y$$-axis.
Then required area
$$\eqalign{
& = Ar\left( {\Delta BOA} \right) + Ar\left( {OCPD} \right) - Ar\left( {\Delta APD} \right) \cr
& = \frac{1}{2} \times 4 \times 2 + \int_0^3 {x\,dy - \frac{1}{2} \times 2 \times 1} \cr
& = 3 + \int_0^3 {{{\left( {y - 2} \right)}^2} + 1\,dy} \cr
& = 3 + \left[ {\frac{{{{\left( {y - 2} \right)}^3}}}{3} + y} \right]_0^3 \cr
& = 3 + \left[ {\frac{1}{3} + 3 + \frac{8}{3}} \right] \cr
& = 3 + 6 \cr
& = 9\,{\text{sq}}{\text{. units}} \cr} $$
33.
What is the area under the curve $$y = \left| x \right| + \left| {x - 1} \right|$$ between $$x = 0$$ and $$x = 1\,?$$
34.
Area of the region $$\left\{ {\left( {x,\,y} \right) \in {{R}^2}\,:\,y \geqslant \sqrt {\left| {x + 3} \right|} ,\,5y \leqslant x + 9 \leqslant 15} \right\}$$ is equal to :
A
$$\frac{1}{6}$$
B
$$\frac{4}{3}$$
C
$$\frac{3}{2}$$
D
$$\frac{5}{3}$$
Answer :
$$\frac{3}{2}$$
Area $$ABE$$ (under parabola) $$ = \int_{ - 4}^{ - 3} {\sqrt { - x - 3} dx} = \frac{2}{3}$$
Area $$BCD$$ (under parabola) $$ = \int_{ - 3}^1 {\sqrt {x + 3} dx} = \frac{{16}}{3}$$
Area of trapezium $$ACDE = \frac{1}{2}\left( {1 + 2} \right)5 = \frac{{15}}{2}$$
Required area $$ = \frac{{15}}{2} - \frac{{16}}{3} - \frac{2}{3} = \frac{3}{2}$$
35.
Let $$f\left( x \right)$$ be a function defined by $$f\left( x \right) = \int_1^x {x\left( {{x^2} - 3x + 2} \right)dx,\,1 \leqslant x \leqslant 3.} $$ Then the range of $$f\left( x \right)$$ is :
A
$$\left[ {0,\,2} \right]$$
B
$$\left[ { - \frac{1}{4},\,4} \right]$$
C
$$\left[ { - \frac{1}{4},\,2} \right]$$
D
none of these
Answer :
$$\left[ { - \frac{1}{4},\,2} \right]$$
$$\eqalign{
& f'\left( x \right) = x\left( {{x^2} - 3x + 2} \right) = x\left( {x - 1} \right)\left( {x - 2} \right) \cr
& {\text{The sign scheme for}}\,{\text{ }}f'\left( x \right){\text{ is as below}}{\text{.}} \cr} $$
$$\eqalign{
& \therefore f'\left( x \right) \leqslant 0{\text{ in }}1 \leqslant x \leqslant 2{\text{ and }}f'\left( x \right) \geqslant 0{\text{ in }}2 \leqslant x \leqslant 3 \cr
& \therefore f\left( x \right)\,{\text{is m}}{\text{.d}}{\text{. in }}\left[ {1,\,2} \right]{\text{ and m}}{\text{.i}}{\text{. in }}\left[ {2,\,3} \right] \cr
& \therefore \min f\left( x \right) = f\left( 2 \right) = \int_1^2 {x\left( {{x^2} - 3x + 2} \right)dx} \cr
& = \left[ {\frac{{{x^4}}}{4} - {x^3} + {x^2}} \right]_1^2 \cr
& = - \frac{1}{4} \cr
& \max f\left( x \right) = {\text{the greatest among}}\left\{ {f\left( 1 \right),\,f\left( 3 \right)} \right\} \cr
& f\left( 1 \right) = \int_1^1 {x\left( {{x^2} - 3x + 2} \right)dx} = 0 \cr
& f\left( 3 \right) = \int_1^3 {x\left( {{x^2} - 3x + 2} \right)dx} = \left[ {\frac{{{x^4}}}{4} - {x^3} + {x^2}} \right]_1^3 = 2 \cr
& \therefore \max f\left( x \right) = 2.\,\,{\text{So, the range }} = \left[ { - \frac{1}{4},\,2} \right] \cr} $$
36.
$$\int_0^\pi {{{\sin }^6}x.{{\cos }^5}x\,dx} $$ is equal to :
A
$$2\int_0^{\frac{\pi }{2}} {{{\sin }^{50}}x.{{\cos }^{47}}x\,dx} $$