Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The parabolas $${y^2} = 4x$$   and $${x^2} = 4y$$   divide the square region bounded by the lines $$x = 4,\,y = 4$$    and the coordinate axes. If $${S_1},\,{S_2},\,{S_3}$$   are respectively the areas of these parts numbered from top to bottom; then $${S_1}:{S_2}:{S_3}$$    is-

A $$1 : 2 : 1$$
B $$1 : 2 : 3$$
C $$2 : 1 : 2$$
D $$1 : 1 : 1$$
Answer :   $$1 : 1 : 1$$

42. The area between the parabolas $${x^2} = \frac{y}{4}$$  and $${x^2} = 9y$$   and the straight line $$y = 2$$  is:

A $$20\sqrt 2 $$
B $$\frac{{10\sqrt 2 }}{3}$$
C $$\frac{{20\sqrt 2 }}{3}$$
D $$10\sqrt 2 $$
Answer :   $$\frac{{20\sqrt 2 }}{3}$$

43. Let $$f\left( x \right)$$  be a continuous function in $$R$$ such that $$f\left( x \right) + f\left( y \right) = f\left( {x + y} \right).$$     If $$\int_0^3 {f\left( x \right)dx = k} $$    then $$\int_{ - 3}^3 {f\left( x \right)dx} $$    is equal to

A $$2k$$
B 0
C $$\frac{k}{2}$$
D $$-2k$$
Answer :   0

44. The area bounded by the curve $$y = \sqrt x ,$$  the line $$2y+3=x$$   and the $$x$$-axis in the first quadrant is :

A $$9$$
B $$\frac{{27}}{4}$$
C $$36$$
D $$18$$
Answer :   $$9$$

45. The area bounded by the curve $$y = {\sin ^{ - 1}}x$$   and the line $$x = 0,\,\left| y \right| = \frac{\pi }{2}$$    is :

A $$1$$
B $$2$$
C $$\pi $$
D $$2\pi $$
Answer :   $$2$$

46. The value of $$\int_0^{\frac{\pi }{2}} {\frac{{dx}}{{1 + {{\tan }^3}x}}} $$    is :

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{4}$$
C $$\pi $$
D none of these
Answer :   $$\frac{\pi }{4}$$

47. The value of $$\int_0^{\frac{\pi }{4}} {\log \left( {1 + \tan \,x} \right)dx} $$     is equal to :

A $$\frac{\pi }{8}{\log _e}2$$
B $$\frac{\pi }{4}{\log _e}2$$
C $$\frac{\pi }{4}$$
D none of these
Answer :   $$\frac{\pi }{8}{\log _e}2$$

48. The area bounded by the curve $$y = f\left( x \right),\,y = x$$    and the lines $$x = 1, x = t$$   is $$\left( {t + \sqrt {1 + {t^2}} } \right) - \sqrt 2 - 1\,sq.$$      unit, for all $$t > 1.$$  If $$f\left( x \right)$$  satisfying $$f\left( x \right) > x$$   for all $$x > 1,$$  then $$f\left( x \right)$$  is equal to :

A $$x + 1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$
B $$x + \frac{x}{{\sqrt {1 + {x^2}} }}$$
C $$1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$
D $$\frac{x}{{\sqrt {1 + {x^2}} }}$$
Answer :   $$x + 1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$

49. If $$f\left( x \right) = \int_0^x {\log \left( {1 + {t^2}} \right)dt} $$      then the value of $$f''\left( 1 \right)$$  is equal to :

A 2
B 0
C 1
D none of these
Answer :   1

50. Let $$f\left( x \right)$$  be a continuous function such that $$\int_n^{n + 1} {f\left( x \right)dx = {n^3},\,n\, \in \,Z.} $$      Then the value of $$\int_{ - 3}^3 {f\left( x \right)dx} $$    is :

A $$9$$
B $$-27$$
C $$-9$$
D none of these
Answer :   $$-27$$