Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. If $$f\left( {2a - x} \right) = f\left( x \right)$$    and $$\int_0^a {f\left( x \right)dx = \lambda } $$    then $$\int_0^{2a} {f\left( x \right)dx} $$   is :

A $$2\lambda $$
B $$\lambda $$
C 0
D none of these
Answer :   $$2\lambda $$

62. The area bounded by the curve $$y = {2^x},$$  the $$x$$-axis and the $$y$$-axis is :

A $${\log _e}2$$
B $${\log _e}4$$
C $${\log _4}e$$
D $${\log _2}e$$
Answer :   $${\log _2}e$$

63. Let $$f\left( x \right)$$  be a continuous function such that $$f\left( x \right)$$  does not vanish for all $$x\, \in \,R.$$   If $$\int_2^3 {f\left( x \right)} dx = \int_{ - 2}^3 {f\left( x \right)} dx$$      then $$f\left( x \right),\,x\, \in \,R,$$    is :

A an even function
B an odd function
C a periodic function
D none of these
Answer :   none of these

64. The area bounded by the curves $${x^2} + {y^2} = 25,\,4y = \left| {4 - {x^2}} \right|$$      and $$x = 0,$$  above $$x$$-axis is :

A $$2 + \frac{{25}}{2}{\sin ^{ - 1}}\frac{4}{5}$$
B $$2 + \frac{{25}}{4}{\sin ^{ - 1}}\frac{4}{5}$$
C $$2 + \frac{{25}}{2}{\sin ^{ - 1}}\frac{1}{5}$$
D None of these
Answer :   $$2 + \frac{{25}}{2}{\sin ^{ - 1}}\frac{4}{5}$$

65. If the area enclosed by $${y^2} = 4ax$$   and line $$y = ax$$  is $$\frac{1}{3}$$ sq. units , then the area enclosed by $$y = 4x$$  with same parabola is :

A 8 sq. units
B 4 sq. units
C $$\frac{4}{3}$$ sq. units
D $$\frac{8}{3}$$ sq. units
Answer :   $$\frac{8}{3}$$ sq. units

66. Let $$f\left( x \right) = $$   maximum $$\left\{ {x + \left| x \right|,\,x - \left[ x \right]} \right\},$$     where $$\left[ x \right] = $$  the greatest integer $$ \leqslant x.$$  Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$    is equal to :

A 3
B 2
C 1
D none of these
Answer :   none of these

67. If $$f\left( x \right) = f\left( {a + x} \right)$$    and $$\int_0^a {f\left( x \right)} dx = p$$    then $$\int_a^{na} {f\left( x \right)dx} $$   is equal to :

A $$np$$
B $$\left( {n - 1} \right)p$$
C $$\left( {n + 1} \right)p$$
D none of these
Answer :   $$\left( {n - 1} \right)p$$

68. Let $$f\left( x \right) = \frac{{{e^x} + 1}}{{{e^x} - 1}}$$    and $$\int_0^1 {\frac{{{e^x} + 1}}{{{e^x} - 1}}.x\,dx} = \lambda .$$     Then $$\int_{ - 1}^1 {tf\left( t \right)dt} $$    is equal to :

A 0
B $$2\lambda $$
C $$\lambda $$
D none of these
Answer :   $$2\lambda $$

69. Let $$\int_0^a {f\left( x \right)dx} = \lambda $$    and $$\int_0^a {f\left( {2a - x} \right)dx} = \mu .$$     Then $$\int_0^{2a} {f\left( x \right)dx} $$    is equal to :

A $$\lambda + \mu $$
B $$\lambda - \mu $$
C $$2\lambda - \mu $$
D $$\lambda - 2\mu $$
Answer :   $$\lambda - \mu $$

70. If $$\int_0^1 {x{e^{{x^2}}}} dx = \lambda \int_0^1 {{e^{{x^2}}}} dx,$$      then :

A $$\lambda = 0$$
B $$\lambda \, \in \left( {0,\,1} \right)$$
C $$\lambda \, \in \left( { - \infty ,\,0} \right)$$
D $$\lambda \, \in \left( {1,\,2} \right)$$
Answer :   $$\lambda \, \in \left( {0,\,1} \right)$$