Application of Integration MCQ Questions & Answers in Calculus | Maths
Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
Let $$f\left( x \right)$$ be a continuous function such that $$f\left( {a - x} \right) + f\left( x \right) = 0$$ for all $$x\, \in \,\left[ {0,\,a} \right].$$ Then $$\int_0^a {\frac{{dx}}{{1 + {e^{f\left( x \right)}}}}} $$ is equal to :
A
$$a$$
B
$$\frac{a}{2}$$
C
$$f\left( a \right)$$
D
$$\frac{1}{2}f\left( a \right)$$
Answer :
$$\frac{a}{2}$$
$$\eqalign{
& I = \int_0^a {\frac{{dx}}{{1 + {e^{f\left( x \right)}}}}} = \int_0^a {\frac{{dx}}{{1 + {e^{f\left( {a - x} \right)}}}}} = \int_0^a {\frac{{dx}}{{1 + {e^{ - f\left( x \right)}}}}} \left( {{\text{from the question}}} \right) \cr
& \,\,\,\,\, = \int_0^a {\frac{{{e^{f\left( x \right)}}dx}}{{{e^{f\left( x \right)}} + 1}}} \cr
& \therefore I + I = \int_0^a {\frac{{dx}}{{1 + {e^{f\left( x \right)}}}}} + \int_0^a {\frac{{{e^{f\left( x \right)}}}}{{1 + {e^{f\left( x \right)}}}}} dx \cr
& \therefore 2I = \int_0^a {dx} = a \cr} $$
72.
The function $$f\left( x \right) = \int_{ - 1}^x {t\left( {{e^t} - 1} \right){{\left( {t - 2} \right)}^3}{{\left( {t - 3} \right)}^5}} dt$$ has a local minimum at $$x$$ which is equal to :
73.
Let $$f\left( x \right) = x - \left[ x \right]$$ for $$x\, \in \,R,$$ where $$\left[ x \right] = $$ the greatest integer $$ \leqslant x.$$ Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$ is :
76.
The area of the figure bounded by $${y^2} = 2x + 1$$ and $$x – y = 1$$ is :
A
$$\frac{2}{3}$$
B
$$\frac{4}{3}$$
C
$$\frac{8}{3}$$
D
$$\frac{{16}}{3}$$
Answer :
$$\frac{{16}}{3}$$
Area of the region is given by
$$A = \int\limits_{ - 1}^3 {\left[ {\left( {y + 1} \right) - \left( {\frac{{{y^2} - 1}}{2}} \right)} \right]dy} = \frac{{16}}{3}$$
77.
The area (in sq. units) bounded by the parabola $$y = {x^2} - 1,$$ the tangent at the point $$\left( {2,\,3} \right)$$ to it and the $$y$$-axis is:
78.
The area bounded by the curves $$y = \ln \,x,\,y = \ln \left| x \right|,\,y = \left| {\ln \,x} \right|$$ and $$y = \left| {\ln \left| x \right|} \right|$$ is-
A
$$4$$ square units
B
$$6$$ square units
C
$$10$$ square units
D
none of these
Answer :
$$4$$ square units
First we draw each curve as separate graph NOTE : Graph of $$y = \left| {f\left( x \right)} \right|$$ can be obtained from the graph of the curve $$y = f\left( x \right)$$ by drawing the mirror image of the portion of the graph below $$x$$-axis, with respect to $$x$$-axis.
Clearly the bounded area is as shown in the following figure.
$$\eqalign{
& {\text{Required area}}\, = 4\int\limits_0^1 {\left( { - \ell nx} \right)dx} \cr
& = - 4\left[ {x\,\ell n\,x - x} \right]_0^1 \cr
& = 4\,{\text{sq}}{\text{. units}} \cr} $$
79.
The area bounded by the curves $$y = f\left( x \right),$$ the $$x$$-axis and the ordinates $$x = 1$$ and $$x = b$$ is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$ Then $$f\left( x \right)$$ is-
80.
If \[f\left( x \right) = \left\{ \begin{array}{l}
\left| x \right| + 1,\, - 1 \le x < 0\\
1 + {\left| x \right|^2},\,0 \le x \le 1
\end{array} \right.\] then $$\int_{ - 1}^1 {f\left( x \right)dx} $$ is equal to :