Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. Let $$f\left( x \right)$$  be a continuous function such that $$f\left( {a - x} \right) + f\left( x \right) = 0$$     for all $$x\, \in \,\left[ {0,\,a} \right].$$   Then $$\int_0^a {\frac{{dx}}{{1 + {e^{f\left( x \right)}}}}} $$    is equal to :

A $$a$$
B $$\frac{a}{2}$$
C $$f\left( a \right)$$
D $$\frac{1}{2}f\left( a \right)$$
Answer :   $$\frac{a}{2}$$

72. The function $$f\left( x \right) = \int_{ - 1}^x {t\left( {{e^t} - 1} \right){{\left( {t - 2} \right)}^3}{{\left( {t - 3} \right)}^5}} dt$$         has a local minimum at $$x$$ which is equal to :

A 0
B 1
C 2
D 3
Answer :   3

73. Let $$f\left( x \right) = x - \left[ x \right]$$    for $$x\, \in \,R,$$   where $$\left[ x \right] = $$  the greatest integer $$ \leqslant x.$$  Then $$\int_{ - 2}^2 {f\left( x \right)dx} $$   is :

A $$4$$
B $$2$$
C $$0$$
D $$1$$
Answer :   $$2$$

74. $$\int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{{{e^x}.{{\sec }^2}x\,dx}}{{{e^{2x}} - 1}}} $$    is equal to :

A 0
B 2
C $$e$$
D none of these
Answer :   0

75. The value of $$\int_0^\pi {\frac{{\sin \,nx}}{{\sin \,x}}} dx,\,n\, \in \,N,$$     is :

A $$\pi $$ if $$n$$ is even
B 0 if $$n$$ is odd
C 0 if $$n$$ is even
D $$\pi $$ for all $$n\, \in \,N$$
Answer :   0 if $$n$$ is even

76. The area of the figure bounded by $${y^2} = 2x + 1$$   and $$x – y = 1$$   is :

A $$\frac{2}{3}$$
B $$\frac{4}{3}$$
C $$\frac{8}{3}$$
D $$\frac{{16}}{3}$$
Answer :   $$\frac{{16}}{3}$$

77. The area (in sq. units) bounded by the parabola $$y = {x^2} - 1,$$   the tangent at the point $$\left( {2,\,3} \right)$$  to it and the $$y$$-axis is:

A $$\frac{8}{3}$$
B $$\frac{32}{3}$$
C $$\frac{56}{3}$$
D $$\frac{14}{3}$$
Answer :   $$\frac{8}{3}$$

78. The area bounded by the curves $$y = \ln \,x,\,y = \ln \left| x \right|,\,y = \left| {\ln \,x} \right|$$      and $$y = \left| {\ln \left| x \right|} \right|$$   is-

A $$4$$ square units
B $$6$$ square units
C $$10$$  square units
D none of these
Answer :   $$4$$ square units

79. The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B $$\sin \,\left( {3x + 4} \right)$$
C $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D none of these
Answer :   $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$

80. If \[f\left( x \right) = \left\{ \begin{array}{l} \left| x \right| + 1,\, - 1 \le x < 0\\ 1 + {\left| x \right|^2},\,0 \le x \le 1 \end{array} \right.\]       then $$\int_{ - 1}^1 {f\left( x \right)dx} $$   is equal to :

A $$ - \frac{1}{6}$$
B $$\frac{{17}}{6}$$
C $$ - \frac{{17}}{6}$$
D none of these
Answer :   $$\frac{{17}}{6}$$