Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. The area bounded by the parabolas $$y = {\left( {x + 1} \right)^2}$$   and $$y = {\left( {x - 1} \right)^2}$$   and the line $$y = \frac{1}{4}$$  is-

A $$4\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B $$\frac{1}{6} \,{\text{sq}}{\text{.}}\,{\text{units}}$$
C $$\frac{4}{3} \,{\text{sq}}{\text{.}}\,{\text{units}}$$
D $$\frac{1}{3} \,{\text{sq}}{\text{.}}\,{\text{units}}$$
Answer :   $$\frac{1}{3} \,{\text{sq}}{\text{.}}\,{\text{units}}$$

82. If $$f\left( { - x} \right) + f\left( x \right) = 0$$     then $$\int_a^x {f\left( t \right)dt} $$   is :

A an odd function
B an even function
C a periodic function
D none of these
Answer :   an even function

83. The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A $$1$$
B $$2$$
C $$2\sqrt 2 $$
D $$4$$
Answer :   $$2$$

84. The area bounded by the $$x$$-axis, the curve $$y = f\left( x \right)$$   and the lines $$x =1,\,x = b,$$   is equal to $$\sqrt {{b^2} + 1} - \sqrt 2 $$    for all $$b > 1,$$  then $$f\left( x \right)$$  is :

A $$\sqrt {x - 1} $$
B $$\sqrt {x + 1} $$
C $$\sqrt {{x^2} + 1} $$
D $$\frac{x}{{\sqrt {1 + {x^2}} }}$$
Answer :   $$\frac{x}{{\sqrt {1 + {x^2}} }}$$

85. The area of the region described by $$A = \left\{ {\left( {x,\,y} \right):{x^2} + {y^2} \leqslant 1\,{\text{and}}\,{y^2} \leqslant 1 - x} \right\}$$        is:

A $$\frac{\pi }{2} - \frac{2}{3}$$
B $$\frac{\pi }{2} + \frac{2}{3}$$
C $$\frac{\pi }{2} + \frac{4}{3}$$
D $$\frac{\pi }{2} - \frac{4}{3}$$
Answer :   $$\frac{\pi }{2} + \frac{4}{3}$$

86. If $$\int_{ - 2}^3 {f\left( x \right)} dx = 5$$    and $$\int_1^3 {\left\{ {2 - f\left( x \right)} \right\}dx = 6} $$      then the value of $$\int_{ - 2}^1 {f\left( x \right)} dx$$    is :

A 7
B 3
C $$-7$$
D $$-3$$
Answer :   7

87. The value of $$\int_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{x}{{1 + \sin \,x}}dx} $$     is equal to :

A $$\left( {\sqrt 2 - 1} \right)\pi $$
B $$\left( {\sqrt 2 + 1} \right)\pi $$
C $$\pi $$
D none of these
Answer :   $$\left( {\sqrt 2 - 1} \right)\pi $$

88. $$\int_{ - 2}^2 {\left| {x\left( {x - 1} \right)} \right|dx} $$    is :

A $$\frac{{11}}{3}$$
B $$\frac{{13}}{3}$$
C $$\frac{{16}}{3}$$
D $$\frac{{17}}{3}$$
Answer :   $$\frac{{17}}{3}$$

89. Let $$f\left( x \right)$$  be a continuous function such that the area bounded by the curve $$y = f\left( x \right),$$   the $$x$$-axis, and the lines $$x=0$$  and $$x=a$$  is $$1 + \frac{{{a^2}}}{2}\sin \,a.$$   Then :

A $$f\left( {\frac{\pi }{2}} \right) = 1 + \frac{{{\pi ^2}}}{8}$$
B $$f\left( a \right) = 1 + \frac{{{a^2}}}{2}\sin \,a$$
C $$f\left( a \right) = a\sin \,a + \frac{1}{2}{a^2}\cos \,a$$
D none of these
Answer :   $$f\left( a \right) = a\sin \,a + \frac{1}{2}{a^2}\cos \,a$$

90. What is the area bounded by the curve $$y = 4x - {x^2} - 3$$    and the $$x$$-axis ?

A $$\frac{2}{3}{\text{ sq}}{\text{. unit}}$$
B $$\frac{4}{3}{\text{ sq}}{\text{. unit}}$$
C $$\frac{5}{3}{\text{ sq}}{\text{. unit}}$$
D $$\frac{4}{5}{\text{ sq}}{\text{. unit}}$$
Answer :   $$\frac{4}{3}{\text{ sq}}{\text{. unit}}$$