The given curves are
$$y = {\left( {x + 1} \right)^2}.....(1)$$
upward parabola with vertex at $$\left( { - 1,\,0} \right)$$ meeting $$y$$-axis at $$\left( {0,\,1} \right)$$
$$y = {\left( {x - 1} \right)^2}.....(2)$$
upward parabola with vertex at $$\left( {1,\,0} \right)$$ meeting $$y$$-axis at $$\left( {1,\,0} \right)$$
$$y = \frac{1}{4}.....(3)$$
a line parallel to $$x$$-axis meeting (1) at $$\left( { - \frac{1}{2},\,\frac{1}{4}} \right),\,\left( { - \frac{3}{2},\,\frac{1}{4}} \right)$$
and meeting (2) at $$\left( {\frac{3}{2},\,\frac{1}{4}} \right),\left( {\frac{1}{2},\,\frac{1}{4}} \right)$$
The graph is as shown
The required area is the shaded portion given by ar $$\left( {BPCQB} \right) = 2Ar\left( {PQCP} \right)$$ (by symmetry)
$$\eqalign{
& = 2\left[ {\int\limits_0^{\frac{1}{2}} {\left( {{{\left( {x - 1} \right)}^2} - \frac{1}{4}} \right)dx} } \right] \cr
& = 2\left[ {\left( {\frac{{{{\left( {x - 1} \right)}^3}}}{3} - \frac{x}{4}} \right)_0^{\frac{1}{2}}} \right] \cr
& = 2\left[ {\left( { - \frac{1}{{24}} - \frac{1}{8}} \right) - \left( { - \frac{1}{3}} \right)} \right] \cr
& = 2\left[ {\frac{{ - 1 - 3 + 8}}{{24}}} \right] \cr
& = \frac{1}{3}{\text{ sq}}{\text{. units}} \cr} $$
82.
If $$f\left( { - x} \right) + f\left( x \right) = 0$$ then $$\int_a^x {f\left( t \right)dt} $$ is :
A
an odd function
B
an even function
C
a periodic function
D
none of these
Answer :
an even function
$$\eqalign{
& {\text{Let }}\phi \left( x \right) = \int_a^x {f\left( t \right)dt.\,{\text{Then }}\phi } \left( { - x} \right) = \int_a^{ - x} {f\left( t \right)dt} \cr
& \therefore \phi \left( { - x} \right) = \int_a^x {f\left( t \right)dt} + \int_x^{ - x} {f\left( t \right)dt} \cr
& = \phi \left( x \right) + \int_x^0 {f\left( t \right)dt} + \int_0^{ - x} {f\left( t \right)dt} \cr
& = \phi \left( x \right) - \int_0^x {f\left( t \right)dt} + \int_0^x { - f\left( { - z} \right)dz,{\text{ using }}t} = - z \cr
& = \phi \left( x \right) - \int_0^x {\left\{ {f\left( t \right) + f\left( { - t} \right)} \right\}dt} \cr
& = \phi \left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because f\left( t \right) + f\left( { - t} \right) = 0,{\text{ from the question}}} \right) \cr
& \therefore \,\,\,\phi \left( x \right){\text{ is even}}{\text{.}} \cr} $$
83.
The area bounded by the curves $$y = \left| x \right| - 1$$ and $$y = - \left| x \right| + 1$$ is-
A
$$1$$
B
$$2$$
C
$$2\sqrt 2 $$
D
$$4$$
Answer :
$$2$$
The given lines are
$$\eqalign{
& y = x - 1;\,\,\,y = - x - 1; \cr
& y = x + 1\,{\text{and}}\,y = - x + 1 \cr} $$
which are two pairs of parallel lines and distance between the lines of each pair is $$\sqrt 2 .$$ Also non parallel lines are perpendicular. Thus lines represents a square
of side $$\sqrt 2 .$$
Hence, area $$ = {\left( {\sqrt 2 } \right)^2} = 2$$ sq. units.
84.
The area bounded by the $$x$$-axis, the curve $$y = f\left( x \right)$$ and the lines $$x =1,\,x = b,$$ is equal to $$\sqrt {{b^2} + 1} - \sqrt 2 $$ for all $$b > 1,$$ then $$f\left( x \right)$$ is :
A
$$\sqrt {x - 1} $$
B
$$\sqrt {x + 1} $$
C
$$\sqrt {{x^2} + 1} $$
D
$$\frac{x}{{\sqrt {1 + {x^2}} }}$$
Answer :
$$\frac{x}{{\sqrt {1 + {x^2}} }}$$
Given $$\int\limits_1^b {f\left( x \right)dx} = \sqrt {{b^2} + 1} - \sqrt 2 $$
Differentiate with respect to $$b$$
$$f\left( b \right) = \frac{b}{{\sqrt {{b^2} + 1} }} \Rightarrow f\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}$$
85.
The area of the region described by $$A = \left\{ {\left( {x,\,y} \right):{x^2} + {y^2} \leqslant 1\,{\text{and}}\,{y^2} \leqslant 1 - x} \right\}$$ is:
A
$$\frac{\pi }{2} - \frac{2}{3}$$
B
$$\frac{\pi }{2} + \frac{2}{3}$$
C
$$\frac{\pi }{2} + \frac{4}{3}$$
D
$$\frac{\pi }{2} - \frac{4}{3}$$
Answer :
$$\frac{\pi }{2} + \frac{4}{3}$$
Given curves are $${x^2} + {y^2} = 1$$ and $${y^2} = 1 - x.$$
Intersecting points are $$x=0,\,1$$
Area of shaded portion is the required area.
So, Required Area $$=$$ Area of semi-circle $$+$$ Area bounded by parabola
$$\eqalign{
& = \frac{{\pi {r^2}}}{2} + 2\int\limits_0^1 {\sqrt {1 - x} \,dx} \cr
& = \frac{\pi }{2} + 2\int\limits_0^1 {\sqrt {1 - x} \,dx} \,\,\,\,\,\left( {\because {\text{radius of circle}} = 1} \right) \cr
& = \frac{\pi }{2} + 2\left[ {\frac{{{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}{{ - \frac{3}{2}}}} \right]_0^1 \cr
& = \frac{\pi }{2} - \frac{4}{3}\left( { - 1} \right) \cr
& = \frac{\pi }{2} + \frac{4}{3}{\text{ sq}}{\text{. unit}} \cr} $$
86.
If $$\int_{ - 2}^3 {f\left( x \right)} dx = 5$$ and $$\int_1^3 {\left\{ {2 - f\left( x \right)} \right\}dx = 6} $$ then the value of $$\int_{ - 2}^1 {f\left( x \right)} dx$$ is :
89.
Let $$f\left( x \right)$$ be a continuous function such that the area bounded by the curve $$y = f\left( x \right),$$ the $$x$$-axis, and the lines $$x=0$$ and $$x=a$$ is $$1 + \frac{{{a^2}}}{2}\sin \,a.$$ Then :
A
$$f\left( {\frac{\pi }{2}} \right) = 1 + \frac{{{\pi ^2}}}{8}$$
B
$$f\left( a \right) = 1 + \frac{{{a^2}}}{2}\sin \,a$$
C
$$f\left( a \right) = a\sin \,a + \frac{1}{2}{a^2}\cos \,a$$