Continuity MCQ Questions & Answers in Calculus | Maths
Learn Continuity MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
A function $$f\left( x \right)$$ is defined as below
$$f\left( x \right) = \frac{{\cos \left( {\sin \,x} \right) - \cos \,x}}{{{x^2}}},\,x \ne 0{\text{ and }}f\left( 0 \right) = a$$
$$f\left( x \right)$$ is continuous at $$x=0$$ if $$a$$ equals :
53.
Let $$f\left( x \right) = x - \left| {x - {x^2}} \right|,\,x\, \in \left[ { - 1,\,1} \right].$$ Then the number of points at which $$f\left( x \right)$$ is discontinuous is :
A
1
B
2
C
0
D
none of these
Answer :
0
$$f\left( x \right) = x - \left| x \right|.\left| {1 - x} \right|.$$ We know that $$x,\,\left| x \right|,\,\left| {1 - x} \right|$$ are continuous everywhere. As the product and algebraic sum of continuous functions are continuous, $$f\left( x \right)$$ is continuous everywhere.
54.
If \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,mx + 1,\,\,\,\,\,\,\,x \le \frac{\pi }{2}\\
\sin \,x + n,\,\,\,\,\,x > \frac{\pi }{2}
\end{array} \right.\] is continuous at $$x = \frac{\pi }{2},$$ then which one of the following is correct ?
A
$$m = 1,\,n = 0$$
B
$$m = \frac{{n\pi }}{2} + 1$$
C
$$n = m\left( {\frac{\pi }{2}} \right)$$
D
$$m = n = \frac{\pi }{2}$$
Answer :
$$n = m\left( {\frac{\pi }{2}} \right)$$
Given function is \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,mx + 1,\,\,\,\,\,\,\,x \le \frac{\pi }{2}\\
\sin \,x + n,\,\,\,\,\,x > \frac{\pi }{2}
\end{array} \right.\]
As given this function is continuous at $$x = \frac{\pi }{2}$$
So, limit of function when $$x \to \frac{\pi }{2} = f\left( {\frac{\pi }{2}} \right)$$ $$\eqalign{
& \Rightarrow \mathop {\lim }\limits_{x \to \frac{\pi }{2} + } \left( {\sin \,x + n} \right) = f\left( {\frac{\pi }{2}} \right) \cr
& \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\sin \left( {\frac{\pi }{2} + h} \right) + n} \right) = \frac{{mx}}{2} + 1 \cr
& \Rightarrow \sin \frac{\pi }{2} + n = \frac{{m\pi }}{2} + 1 \cr
& \Rightarrow 1 + n = \frac{{m\pi }}{2} + 1 \cr
& \Rightarrow n = \frac{{m\pi }}{2} \cr} $$
55.
Let \[f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,{5^{\frac{1}{x}}},\,\,\,\,\,\,\,x < 0\\
\lambda \left[ x \right],\,\,\,\,x \ge 0
\end{array} \right.{\rm{ \,and\,\, }}\lambda \, \in \,R\] then at $$x = 0$$
A
$$f$$ is discontinuous
B
$$f$$ is continuous only, $$\lambda = 0$$
C
$$f$$ is continuous only, whatever $$\lambda $$ may be
D
none of these
Answer :
$$f$$ is discontinuous
As we know,
A function $$f\left( x \right)$$ is said to be continuous at a point $$x = a$$ iff
$$\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right),$$ otherwise not continuous.
Thus $$f\left( x \right)$$ is continuous at $$x = a$$ iff
$$\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)$$
\[{\rm{Since, }}f\left( x \right) = \left\{ \begin{array}{l}
\,\,\,{5^{\frac{1}{x}}},\,\,\,\,\,\,\,x < 0\\
\lambda \left[ x \right],\,\,\,\,x \ge 0
\end{array} \right.{\rm{ \,and\,\, }}\lambda \, \in \,R\]
$$\eqalign{
& {\text{R}}{\text{.H}}{\text{.L}}{\text{. at }}x = 0:\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \lambda \left[ x \right] = \mathop {\lim }\limits_{h \to 0} \lambda \left[ h \right] = 0 \cr
& {\text{L}}{\text{.H}}{\text{.L}}{\text{. at }}x = 0:\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {5^{\frac{1}{x}}} = \mathop {\lim }\limits_{h \to 0} {5^{ - \frac{1}{h}}} = {5^\infty } = \infty \cr
& {\text{and }}f\left( 0 \right) = \lambda \left[ 0 \right]0 \cr
& {\text{Since, L}}{\text{.H}}{\text{.L}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} \cr} $$
$$\therefore \,f\left( x \right)$$ is not continuous.
56.
If \[f\left( x \right) = \left\{ \begin{array}{l}
\left( {\frac{{{x^2}}}{a}} \right) - a,\,\,\,\,\,{\rm{when\,\, }}x < a\\
\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{when\,\, }}x = a\\
a - \left( {\frac{{{x^2}}}{a}} \right),\,\,\,\,{\rm{when\,\, }}x > a
\end{array} \right.\] ,then :
A
$$\mathop {\lim }\limits_{x \to a} f\left( x \right) = a$$
B
$$f\left( x \right)$$ is continuous at $$x = a$$
C
$$f\left( x \right)$$ is discontinuous at $$x = a$$
D
none of these
Answer :
$$f\left( x \right)$$ is continuous at $$x = a$$
$$\eqalign{
& f\left( a \right) = 0 \cr
& \mathop {\lim }\limits_{x \to a - } f\left( x \right) = \mathop {\lim }\limits_{x \to a - } \left( {\frac{{{x^2}}}{a} - a} \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {\frac{{{{\left( {a - h} \right)}^2}}}{a} - a} \right\} = 0 \cr
& {\text{and }}\mathop {\lim }\limits_{x \to a + } f\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left\{ {a - \frac{{{{\left( {a + h} \right)}^2}}}{a}} \right\} = 0 \cr} $$
Hence it is continuous at $$x = a.$$
57.
If $$f\left( x \right) = {\left( {x + 1} \right)^{\cot \,x}}$$ is continuous at $$x = 0,$$ then what is $$f\left( 0 \right)$$ equal to ?
A
$$1$$
B
$$e$$
C
$$\frac{1}{e}$$
D
$${e^2}$$
Answer :
$$e$$
For a function to be continuous at a point the limit should be exist and should be equal to the value of the function at the point.
Here point is $$x = 0$$
$$\eqalign{
& {\text{and }}\mathop {\lim }\limits_{x \to 0} f\left( x \right) \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {x + 1} \right)^{\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}.x\,\cot \,x}} \cr
& = \mathop {\lim }\limits_{x \to 0} {\left( {x + 1} \right)^{\frac{1}{x}.\mathop {\lim }\limits_{x \to 0} \frac{x}{{\tan \,x}}}} \cr
& = {e^1} \cr
& = e \cr} $$
Since, limiting value of $$f\left( x \right) = e,$$ when $$x \to 0,\,f\left( 0 \right)$$ should also be equal to $$e.$$
58.
Let $$f:\left[ {0,\,1} \right] \to \left[ {0,\,1} \right]$$ be a continuous function. Then :
A
$$f\left( x \right) = x$$ for at least one $$0 \leqslant x \leqslant 1$$
B
$$f\left( x \right)$$ will be differentiable in $$\left[ {0,\,1} \right]$$
C
$$f\left( x \right) + x = 0$$ for at least one $$x$$ such that $$0 \leqslant x \leqslant 1$$
D
none of these
Answer :
$$f\left( x \right) = x$$ for at least one $$0 \leqslant x \leqslant 1$$
Clearly, $$0 \leqslant f\left( 0 \right) \leqslant 1$$ and $$0 \leqslant f\left( 1 \right) \leqslant 1.$$ As $$f\left( x \right)$$ is continuous, $$f\left( x \right)$$ attains all values between $$f\left( 0 \right)$$ to $$f\left( 1 \right),$$ and the graph will have no breaks. So, the graph will cut the line $$y=x$$ at one point $$x$$ at least where $$0 \leqslant x \leqslant 1.$$ So, $$f\left( x \right) = x$$ at that point.
59.
The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$ is not defined at $$x = 0.$$ The value which should be assigned to $$f$$ at $$x = 0,$$ so that it is continuous at $$x =0,$$ is-
A
$$a-b$$
B
$$a+b$$
C
$$\ln a - \ln b$$
D
none of these
Answer :
$$a+b$$
For $$f\left( x \right)$$ to be continuous at $$x =0$$
$$\eqalign{
& f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right) \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}\,\,\left[ {{\text{using}}\,\,\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1} \right] \cr
& = a + b \cr} $$
60.
Given $$f\left( x \right) = b\left( {{{\left[ x \right]}^2} + \left[ x \right]} \right) + 1$$ for $$x \geqslant - 1 = \sin \left( {\pi \left( {x + a} \right)} \right)$$ for $$x < - 1$$ where $$\left[ x \right]$$ denotes the integral part of $$x,$$ then for what values of $$a,\,b$$ the function is continuous at $$x = - 1\,?$$