Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

91. $$\mathop {\lim }\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}},$$    where $$k \ne 0$$  is a constant and $$n\, \in \,N,$$   is equal to :

A $$ke$$
B $${k^{ - 1}}.e$$
C $$k{e^{ - 1}}$$
D $${k^{ - 1}}.{e^{ - 1}}$$
Answer :   $${k^{ - 1}}.{e^{ - 1}}$$

92. If $$f\left( x \right) = \int_{ - 1}^1 {\frac{{\sin \,x}}{{1 + {t^2}}}dt} $$     then $$f'\left( {\frac{\pi }{3}} \right)$$  is :

A nonexistent
B $$\frac{\pi }{4}$$
C $$\frac{{\pi \sqrt 3 }}{4}$$
D none of these
Answer :   $$\frac{\pi }{4}$$

93. $$\int_0^1 {\left[ {f\left( x \right)g''\left( x \right) - f''\left( x \right)g\left( x \right)} \right]} dx$$       is equal to :
[Given $$f\left( 0 \right) = g\left( 0 \right) = 0$$   ]

A $$f\left( 1 \right)g\left( 1 \right) - f\left( 1 \right)g'\left( 1 \right)$$
B $$f\left( 1 \right)g'\left( 1 \right) + f'\left( 1 \right)g\left( 1 \right)$$
C $$f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right)$$
D none of these
Answer :   $$f\left( 1 \right)g'\left( 1 \right) - f'\left( 1 \right)g\left( 1 \right)$$

94. If $$A = \int\limits_0^1 {\frac{{{e^t}}}{{t + 1}}dt,} $$    then $$\int\limits_0^1 {{e^t}\log \left( {1 + t} \right)} dt$$    in terms of $$A$$ equals :

A $$e\,\log \left( A \right)$$
B $$\frac{e}{2} - A$$
C $$e - 1 - \frac{A}{2}$$
D $$\frac{e}{2} - 1 - A$$
Answer :   $$\frac{e}{2} - 1 - A$$

95. If $$l\left( {m,\,n} \right) = \int\limits_0^1 {{t^m}{{\left( {1 + t} \right)}^n}} dt,$$      then the expression for $$l\left( {m,\,n} \right)$$   in terms of $$l\left( {m + 1,\,n - 1} \right)$$    is-

A $$\frac{{{2^n}}}{{m + 1}} - \frac{n}{{m + 1}}l\left( {m + 1,\,n - 1} \right)$$
B $$\frac{n}{{m + 1}}l\left( {m + 1,\,n - 1} \right)$$
C $$\frac{{{2^n}}}{{m + 1}} + \frac{n}{{m + 1}}l\left( {m + 1,\,n - 1} \right)$$
D $$\frac{m}{{n + 1}}l\left( {m + 1,\,n - 1} \right)$$
Answer :   $$\frac{{{2^n}}}{{m + 1}} - \frac{n}{{m + 1}}l\left( {m + 1,\,n - 1} \right)$$

96. What is the value of $$\int_1^2 {{e^x}\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)} dx\,?$$

A $$e\left( {\frac{e}{2} - 1} \right)$$
B $$e\left( {e - 1} \right)$$
C $$e - \frac{1}{e}$$
D $$0$$
Answer :   $$e\left( {\frac{e}{2} - 1} \right)$$

97. The value of $$\int\limits_{\frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2}\cos \,x}}{{1 + {e^x}}}dx} $$    is equal to-

A $$\frac{{{\pi ^2}}}{4} - 2$$
B $$\frac{{{\pi ^2}}}{4} + 2$$
C $${\pi ^2} - {e^{\frac{\pi }{2}}}$$
D $${\pi ^2} + {e^{\frac{\pi }{2}}}$$
Answer :   $$\frac{{{\pi ^2}}}{4} - 2$$

98. If $$f\left( x \right) = a + bx + c{x^2},$$     then what is $$\int_0^1 {f\left( x \right)dx} $$   equal to ?

A $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$
B $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{3}$$
C $$\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]$$
D $$\frac{{\left[ {f\left( 0 \right) + 2f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$
Answer :   $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$

99. The value of $$\int_0^{{{\sin }^2}x} {{{\sin }^{ - 1}}\sqrt t } \,dt + \int_0^{{{\cos }^2}x} {{{\cos }^{ - 1}}\sqrt t } \,dt{\text{ is :}}$$

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{4}$$
D $$1$$
Answer :   $$\frac{\pi }{4}$$

100. $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {\frac{1}{n}\sin \frac{{r\pi }}{{2n}}} $$    is :

A $$\frac{\pi }{2}$$
B 2
C $$\frac{2}{\pi }$$
D none of these
Answer :   $$\frac{2}{\pi }$$