Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. If $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B,\,\,f'\left( {\frac{1}{2}} \right) = \sqrt 2 $$        and $$\int\limits_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi },} $$     then constant $$A$$ and $$B$$ are-

A $$\frac{\pi }{2}{\text{ and }}\frac{\pi }{2}$$
B $$\frac{2}{\pi }{\text{ and }}\frac{3}{\pi }$$
C $$0{\text{ and }}\frac{{ - 4}}{\pi }$$
D $$\frac{4}{\pi }{\text{ and 0}}$$
Answer :   $$\frac{4}{\pi }{\text{ and 0}}$$

102. The integral $$\int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$    is equal to:

A $$ - 1$$
B $$ - 2$$
C $$2$$
D $$4$$
Answer :   $$2$$

103. If \[f\left( x \right) = \left\{ \begin{array}{l} {e^{\cos \,x}}\sin \,x,\,{\rm{for }}\left| x \right| \le 2\\ 2,\,\,\,\,\,\,\,\,\,\,{\rm{otherwise}} \end{array} \right.,\]       then $$\int\limits_{ - 2}^3 {f\left( x \right)dx} = ?$$

A $$0$$
B $$1$$
C $$2$$
D $$3$$
Answer :   $$2$$

104. If $$f\left( x \right) = \int\limits_{{x^2}}^{{x^2} + 1} {{e^{ - {t^2}}}} dt,$$     then$$f\left( x \right)$$  increases in-

A $$\left( { - 2,\,2} \right)$$
B no value of $$x$$
C $$\left( {0,\,\infty } \right)$$
D $$\left( { - \infty ,\,0} \right)$$
Answer :   $$\left( { - \infty ,\,0} \right)$$

105. The value of $$\int\limits_0^1 {\frac{{dx}}{{{e^x} + e}}} $$   is equal to :

A $$\frac{1}{e}\log \left( {\frac{{1 + e}}{2}} \right)$$
B $$\log \left( {\frac{{1 + e}}{2}} \right)$$
C $$\frac{1}{e}\log \left( {1 + e} \right)$$
D $$\log \left( {\frac{2}{{1 + e}}} \right)$$
Answer :   $$\frac{1}{e}\log \left( {\frac{{1 + e}}{2}} \right)$$

106. What is the value of $$\int_0^1 {x{e^{{x^2}}}} dx\,?$$

A $$\frac{{\left( {e - 1} \right)}}{2}$$
B $${e^2} - 1$$
C $$2\left( {e - 1} \right)$$
D $$e - 1$$
Answer :   $$\frac{{\left( {e - 1} \right)}}{2}$$

107. The value of $$\int\limits_0^\pi {{{\left| {\cos \,x} \right|}^3}dx}, $$   is :

A $$0$$
B $$\frac{4}{3}$$
C $$\frac{2}{3}$$
D $$ - \frac{4}{3}$$
Answer :   $$\frac{4}{3}$$

108. Let $$f$$ be a real-valued function defined on the interval (-1, 1) such that $${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} } \,dt,$$      for all $$x \in \left( { - 1,\,1} \right),$$   and let $${f^{ - 1}}$$  be the inverse function of $$f.$$  Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$     is equal to-

A $$1$$
B $$\frac{1}{3}$$
C $$\frac{1}{2}$$
D $$\frac{1}{e}$$
Answer :   $$\frac{1}{3}$$

109. The integral $$\int\limits_0^\pi {\sqrt {1 + 4\,{{\sin }^2}\frac{x}{2} - 4\,\sin \frac{x}{2}} } \,dx$$      equals:

A $$4\sqrt 3 - 4$$
B $$4\sqrt 3 - 4 - \frac{\pi }{3}$$
C $$\pi - 4$$
D $$\frac{{2\pi }}{3} - 4 - 4\sqrt 3 $$
Answer :   $$4\sqrt 3 - 4 - \frac{\pi }{3}$$

110. The value of $$\int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}{{1 + {a^x}}}dx,\,a > 0,} $$     is-

A $$a\pi $$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{a}$$
D $$2\pi $$
Answer :   $$\frac{\pi }{2}$$