Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{2}$$
C $$\pi $$
D none of these
Answer :   $$\frac{\pi }{4}$$

112. If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt} $$     then $$g\left( {x + \pi } \right)$$   equals :

A $$g\left( x \right) + g\left( \pi \right)$$
B $$g\left( x \right) - g\left( \pi \right)$$
C $$g\left( x \right)g\left( \pi \right)$$
D $$\frac{{g\left( x \right)}}{{g\left( \pi \right)}}$$
Answer :   $$g\left( x \right) + g\left( \pi \right)$$

113. If $$f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {x\,g\left\{ {x\left( {1 - x} \right)} \right\}} dx,$$         and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}} dx,$$       then the value of $$\frac{{{I_2}}}{{{I_1}}}$$ is-

A $$1$$
B $$-3$$
C $$-1$$
D $$2$$
Answer :   $$2$$

114. $$\int\limits_0^\pi {x\,f\left( {\sin \,x} \right)dx} $$     is equal to-

A $$\pi \int\limits_0^\pi {\,f\left( {\cos \,x} \right)dx} $$
B $$\pi \int\limits_0^\pi {\,f\left( {\sin \,x} \right)dx} $$
C $$\frac{\pi }{2}\int\limits_0^{\frac{\pi }{2}} {\,f\left( {\sin \,x} \right)dx} $$
D $$\pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {\cos \,x} \right)dx} $$
Answer :   $$\pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {\cos \,x} \right)dx} $$

115. The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin \,x} \right]dx} $$     where [.] represents the greatest integer function is-

A $$\frac{{ - 5\pi }}{3}$$
B $$ - \pi $$
C $$\frac{{ 5\pi }}{3}$$
D $$ - 2\pi $$
Answer :   $$\frac{{ - 5\pi }}{3}$$

116. The value of the integral $$\int\limits_0^1 {\sqrt {\frac{{1 - x}}{{1 + x}}} dx} $$   is-

A $$\frac{\pi }{2} + 1$$
B $$\frac{\pi }{2} - 1$$
C $$ - 1$$
D $$1$$
Answer :   $$\frac{\pi }{2} - 1$$

117. $$\int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$    is equal to-

A $$2$$
B $$ - 2$$
C $$\frac{1}{2}$$
D $$ - \frac{1}{2}$$
Answer :   $$2$$

118. If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt,} $$     then $$g\left( {x + \pi } \right)$$   equals-

A $$g\left( x \right) + g\left( \pi \right)$$
B $$g\left( x \right) - g\left( \pi \right)$$
C $$g\left( x \right)g\left( \pi \right)$$
D $$\frac{{g\left( x \right)}}{{g\left( \pi \right)}}$$
Answer :   $$g\left( x \right) + g\left( \pi \right)$$

119. If $${u_n} = \int_0^{\frac{\pi }{4}} {{{\tan }^n}\theta \,d\theta } $$     then $${u_n} + {u_{n - 2}}$$   is :

A $$\frac{1}{{n - 1}}$$
B $$\frac{1}{{n + 1}}$$
C $$\frac{1}{{2n - 1}}$$
D $$\frac{1}{{2n + 1}}$$
Answer :   $$\frac{1}{{n - 1}}$$

120. The value of $$\int\limits_0^{\frac{\pi }{2}} {\frac{{dx}}{{1 + {{\tan }^3}x}}} $$   is-

A $$0$$
B $$1$$
C $$\frac{\pi }{2}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{4}$$