Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. If $$f\left( x \right)$$  is differentiable and $$\int\limits_0^{{t^2}} {xf\left( x \right)dx = \frac{2}{5}{t^5},} $$     then $$f\left( {\frac{4}{{25}}} \right)$$  equals-

A $$\frac{2}{5}$$
B $$ - \frac{5}{2}$$
C $$1$$
D $$\frac{5}{2}$$
Answer :   $$\frac{2}{5}$$

122. Solve this $$\left[ {\sum\limits_{n = 1}^{10} {\int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}x\,dx} } } \right] + \left[ {\sum\limits_{n = 1}^{10} {\int\limits_{2n}^{2n + 1} {{{\sin }^{27}}x\,dx} } } \right] = ?$$

A $${27^2}$$
B $$ - 54$$
C $$54$$
D $$0$$
Answer :   $$0$$

123. The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$    is-

A $$\frac{1}{3}$$
B $$\frac{14}{3}$$
C $$\frac{7}{3}$$
D $$\frac{28}{3}$$
Answer :   $$\frac{28}{3}$$

124. Solve this $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}} dx = ?$$

A $$ - 2\pi \,\ln \,2$$
B $$ - \frac{\pi }{4}\,\ln \,2$$
C $$ - \pi \,\ln \,2$$
D $$ - \frac{\pi }{2}\,\ln \,2$$
Answer :   $$ - \frac{\pi }{2}\,\ln \,2$$

125. The value of $$\int_0^{\frac{\pi }{2}} {{{\sin }^8}x\,dx} $$    is :

A $$\frac{{105\pi }}{{32\left( {4!} \right)}}$$
B $$\frac{{105\pi }}{{16\left( {4!} \right)}}$$
C $$\frac{{105}}{{16\left( {4!} \right)}}$$
D none of these
Answer :   $$\frac{{105\pi }}{{32\left( {4!} \right)}}$$

126. If $$\int\limits_0^\infty {{e^{ - ax}}dx} = \frac{1}{a},$$    then $$\int\limits_0^\infty {{x^n}{e^{ - ax}}dx} $$    is :

A $$\frac{{{{\left( { - 1} \right)}^n}n!}}{{{a^{n + 1}}}}$$
B $$\frac{{{{\left( { - 1} \right)}^n}\left( {n - 1} \right)!}}{{{a^n}}}$$
C $$\frac{{n!}}{{{a^{n + 1}}}}$$
D None of these
Answer :   $$\frac{{n!}}{{{a^{n + 1}}}}$$

127. If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,{I_2} = \int\limits_0^1 {{2^{{x^3}}}} dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}} dx$$         and $${I_4} = \int\limits_1^2 {{2^{{x^3}}}} dx,$$    then-

A $${I_2} > {I_1}$$
B $${I_1} > {I_2}$$
C $${I_3} = {I_4}$$
D $${I_3} > {I_4}$$
Answer :   $${I_1} > {I_2}$$

128. Let $$\frac{d}{{dx}}F\left( x \right) = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$      If $$\int_1^4 {\frac{{2{e^{\sin \,{x^2}}}}}{x}dx} = F\left( k \right) - F\left( 1 \right)$$       then one of the possible values of $$k$$ is :

A 4
B $$-4$$
C 16
D none of these
Answer :   16

129. The value of $$\mathop {\lim }\limits_{x \to 0} \frac{1}{{{x^3}}}\int\limits_0^x {\frac{{t\,ln\left( {1 + t} \right)}}{{{t^4} + 4}}dt} $$     is-

A $$0$$
B $$\frac{1}{{12}}$$
C $$\frac{1}{{24}}$$
D $$\frac{1}{{64}}$$
Answer :   $$\frac{1}{{12}}$$

130. The line $$y = \alpha $$  intersects the curve $$y = g\left( x \right),$$   at least at two points. If $$\int\limits_2^x {g\left( t \right)dt = } \frac{{{x^2}}}{2} + \int\limits_x^2 {{t^2}g\left( t \right)dt} $$       then possible value of $$\alpha $$ is/are –

A $$\left( { - \frac{1}{2},\,\frac{1}{2}} \right)$$
B $$\left[ { - \frac{1}{2},\,\frac{1}{2}} \right]$$
C $$\left( { - \frac{1}{2},\,\frac{1}{2}} \right) - \left\{ 0 \right\}$$
D $$\left\{ { - \frac{1}{2},\,0,\,\frac{1}{2}} \right\}$$
Answer :   $$\left( { - \frac{1}{2},\,\frac{1}{2}} \right) - \left\{ 0 \right\}$$