121.
If $$f\left( x \right)$$ is differentiable and $$\int\limits_0^{{t^2}} {xf\left( x \right)dx = \frac{2}{5}{t^5},} $$ then $$f\left( {\frac{4}{{25}}} \right)$$ equals-
A
$$\frac{2}{5}$$
B
$$ - \frac{5}{2}$$
C
$$1$$
D
$$\frac{5}{2}$$
Answer :
$$\frac{2}{5}$$
View Solution
$$\int_0^{{t^2}} {xf\left( x \right)dx = \frac{2}{5}{t^5}\,\,\,\,\,\,\left( {{\text{Here, }}t > 0} \right)} $$
Differentiating both sides w.r.t. $$t$$ [Using Leibnitz theorem]
$$\eqalign{
& \Rightarrow {t^2}f\left( {{t^2}} \right) \times 2t - 0 = \frac{2}{5} \times 5{t^4} \cr
& \Rightarrow f\left( {{t^2}} \right) = t \cr
& {\text{Put }}t = \frac{2}{5}\,\,\,\,\,\,\,\,\,\, \Rightarrow f\left( {\frac{4}{{25}}} \right) = \frac{2}{5} \cr} $$
122.
Solve this $$\left[ {\sum\limits_{n = 1}^{10} {\int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}x\,dx} } } \right] + \left[ {\sum\limits_{n = 1}^{10} {\int\limits_{2n}^{2n + 1} {{{\sin }^{27}}x\,dx} } } \right] = ?$$
A
$${27^2}$$
B
$$ - 54$$
C
$$54$$
D
$$0$$
Answer :
$$0$$
View Solution
General term of the series $${\sum\limits_{n = 1}^{10} {\int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}x\,dx} } }$$ is
$$\eqalign{
& {I_1} = \int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}x\,dx} \cr
& = \int\limits_{2n + 1}^{2n} {{{\sin }^{27}}\left( { - x} \right)\left( { - \,dx} \right)} \cr
& = - \int\limits_{2n}^{2n + 1} {{{\sin }^{27}}x\,dx} \cr
& = - {I_2} \cr} $$
Where $${I_2}$$ is general term of series
$$\eqalign{
& \sum\limits_{n = 1}^{10} {\int\limits_{2n}^{2n + 1} {{{\sin }^{27}}x\,dx} } \cr
& {\text{So, }}{I_1} + {I_2} = 0{\text{ for all }}n \cr} $$
123.
The value of $$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} $$ is-
A
$$\frac{1}{3}$$
B
$$\frac{14}{3}$$
C
$$\frac{7}{3}$$
D
$$\frac{28}{3}$$
Answer :
$$\frac{28}{3}$$
View Solution
$$\int\limits_{ - 2}^3 {\left| {1 - {x^2}} \right|dx} = \int\limits_{ - 2}^3 {\left| {{x^2} - 1} \right|dx} $$
\[{\rm{Now }}\left| {{x^2} - 1} \right| = \left\{ \begin{array}{l}
{x^2} - 1\,\,\,{\rm{if}}\,\,\,x \le - 1\\
1 - {x^2}\,\,\,{\rm{if}}\,\,\, - 1 \le x \le 1\\
{x^2} - 1\,\,\,{\rm{if}}\,\,\,x \ge 1
\end{array} \right.\]
$$\eqalign{
& \therefore \,\,\,{\text{Integral is}} \cr
& \int\limits_{ - 2}^{ - 1} {\left( {{x^2} - 1} \right)dx} + \int\limits_{ - 1}^1 {\left( {1 - {x^2}} \right)dx} + \int\limits_1^3 {\left( {{x^2} - 1} \right)dx} \cr
& = \left[ {\frac{{{x^3}}}{3} - x} \right]_{ - 2}^{ - 1} + \left[ {x - \frac{{{x^3}}}{3}} \right]_{ - 1}^1 + \left[ {\frac{{{x^3}}}{3} - x} \right]_1^3 \cr
& = \left( { - \frac{1}{3} + 1} \right) - \left( { - \frac{8}{3} + 2} \right) + \left( {2 - \frac{2}{3}} \right) + \left( {\frac{{27}}{3} - 3} \right) - \left( {\frac{1}{3} - 1} \right) \cr
& = \frac{2}{3} + \frac{2}{3} + \frac{4}{3} + 6 + \frac{2}{3} \cr
& = \frac{{28}}{3} \cr} $$
124.
Solve this $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}} dx = ?$$
A
$$ - 2\pi \,\ln \,2$$
B
$$ - \frac{\pi }{4}\,\ln \,2$$
C
$$ - \pi \,\ln \,2$$
D
$$ - \frac{\pi }{2}\,\ln \,2$$
Answer :
$$ - \frac{\pi }{2}\,\ln \,2$$
View Solution
$$\eqalign{
& I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}} dx \cr
& \Rightarrow I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{ - \left( {x + \sin \,x} \right)}}}}} dx \cr
& \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{x + \sin \,x}}}}\left( {1 + {e^{\left( {x + \sin \,x} \right)}}} \right)dx} \cr
& \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr
& \Rightarrow 2I = 2\int\limits_0^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr
& \Rightarrow I = - \frac{\pi }{2}\ln \,2 \cr} $$
125.
The value of $$\int_0^{\frac{\pi }{2}} {{{\sin }^8}x\,dx} $$ is :
A
$$\frac{{105\pi }}{{32\left( {4!} \right)}}$$
B
$$\frac{{105\pi }}{{16\left( {4!} \right)}}$$
C
$$\frac{{105}}{{16\left( {4!} \right)}}$$
D
none of these
Answer :
$$\frac{{105\pi }}{{32\left( {4!} \right)}}$$
View Solution
$$\eqalign{
& {I_n} = \int_0^{\frac{\pi }{2}} {{{\sin }^n}x\,dx} \cr
& = \int_0^{\frac{\pi }{2}} {{{\sin }^{n - 1}}x.\sin \,x\,dx} \cr
& = \left[ {{{\sin }^{n - 1}}x.\left( { - \cos \,x} \right)} \right]_0^{\frac{\pi }{2}} - \int_0^{\frac{\pi }{2}} { - \cos \,x.\left( {n - 1} \right){{\sin }^{n - 2}}x.\cos \,x\,dx} \cr
& = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {\left( {{{\sin }^{n - 2}}x - {{\sin }^n}x} \right)dx} \cr
& \therefore \,\,\,n{I_n} = \left( {n - 1} \right){I_{n - 2}} \cr
& \therefore \,\,\,{I_n} = \frac{{n - 1}}{n}{I_{n - 2}} \cr
& \therefore \,\,\,{I_8} = \frac{7}{8}{I_6} = \frac{7}{8}.\frac{5}{6}.\frac{3}{4}.\frac{1}{2}{I_0} = \frac{{1.3.5.7}}{{1.2.3.4}}.\frac{1}{{{2^4}}}.\frac{\pi }{2} \cr} $$
126.
If $$\int\limits_0^\infty {{e^{ - ax}}dx} = \frac{1}{a},$$ then $$\int\limits_0^\infty {{x^n}{e^{ - ax}}dx} $$ is :
A
$$\frac{{{{\left( { - 1} \right)}^n}n!}}{{{a^{n + 1}}}}$$
B
$$\frac{{{{\left( { - 1} \right)}^n}\left( {n - 1} \right)!}}{{{a^n}}}$$
C
$$\frac{{n!}}{{{a^{n + 1}}}}$$
D
None of these
Answer :
$$\frac{{n!}}{{{a^{n + 1}}}}$$
View Solution
$$\eqalign{
& {\text{Let }}{I_n} = \int\limits_0^\infty {{x^n}{e^{ - ax}}} \cr
& = \left[ {{x^n}.\frac{{{e^{ - ax}}}}{{ - a}}} \right]_0^\infty - \int\limits_0^\infty {n{x^{n - 1}}.\frac{{{e^{ - ax}}}}{{ - a}}dx} \cr
& = - \frac{1}{a}\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{e^{ax}}}} + \frac{n}{a}{I_{n - 1}} \cr
& \therefore \,{I_n} = \frac{n}{a}{I_{n - 1}} \cr
& = \frac{n}{a}.\frac{{n - 1}}{a}{I_{n - 2}} \cr
& = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{{a^3}}}{I_{n - 3}} \cr
& = \frac{{n!}}{{{a^n}}}\int\limits_0^\infty {{e^{ - ax}}} dx \cr
& = \frac{{n!}}{{{a^{n + 1}}}} \cr} $$
127.
If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,{I_2} = \int\limits_0^1 {{2^{{x^3}}}} dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}} dx$$ and $${I_4} = \int\limits_1^2 {{2^{{x^3}}}} dx,$$ then-
A
$${I_2} > {I_1}$$
B
$${I_1} > {I_2}$$
C
$${I_3} = {I_4}$$
D
$${I_3} > {I_4}$$
Answer :
$${I_1} > {I_2}$$
View Solution
$$\eqalign{
& {I_1} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,{I_2} = \int\limits_0^1 {{2^{{x^3}}}} dx \cr
& = {I_3} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,{I_4} = \int\limits_0^1 {{2^{{x^3}}}} dx\,\forall \,0 < x < 1,\,{x^2} > {x^3} \cr
& \Rightarrow \int\limits_0^1 {{2^{{x^2}}}} dx > \int\limits_0^1 {{2^{{x^3}}}} dx \cr
& \Rightarrow {I_1} > {I_2} \cr} $$
128.
Let $$\frac{d}{{dx}}F\left( x \right) = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$ If $$\int_1^4 {\frac{{2{e^{\sin \,{x^2}}}}}{x}dx} = F\left( k \right) - F\left( 1 \right)$$ then one of the possible values of $$k$$ is :
A
4
B
$$-4$$
C
16
D
none of these
Answer :
16
View Solution
$$\eqalign{
& {\text{Put }}{x^2} = z \cr
& {\text{Then }}\int_1^4 {\frac{{2.{e^{\sin \,{x^2}}}}}{x}dx} = \int_1^{16} {\frac{{{e^{\sin \,z}}}}{z}dz} \cr
& = \int_1^{16} {\frac{d}{{dz}}\left\{ {F\left( z \right)} \right\}dz} \cr
& = \left[ {F\left( z \right)} \right]_1^{16} \cr
& = F\left( {16} \right) - F\left( 1 \right) \cr} $$
$$\therefore \,F\left( {16} \right) = F\left( k \right),$$ from the question.
Hence, one of the possible values of $$k=16.$$
129.
The value of $$\mathop {\lim }\limits_{x \to 0} \frac{1}{{{x^3}}}\int\limits_0^x {\frac{{t\,ln\left( {1 + t} \right)}}{{{t^4} + 4}}dt} $$ is-
A
$$0$$
B
$$\frac{1}{{12}}$$
C
$$\frac{1}{{24}}$$
D
$$\frac{1}{{64}}$$
Answer :
$$\frac{1}{{12}}$$
View Solution
$$\mathop {\lim }\limits_{x \to 0} \frac{1}{{{x^3}}}\int_0^x {\frac{{t\,ln\left( {1 + t} \right)}}{{{t^4} + 4}}dt\,\,\,\,\,\left[ {\frac{0}{0}{\text{form}}} \right]} $$
Applying L’ Hospital’s rule, we get
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{xln\left( {1 + x} \right)}}{{{x^4} + 4}}}}{{3{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{ln\left( {1 + x} \right)}}{x}.\frac{1}{{3\left( {{x^4} + 4} \right)}} \cr
& = 1.\frac{1}{{12}} \cr
& = \frac{1}{{12}} \cr} $$
130.
The line $$y = \alpha $$ intersects the curve $$y = g\left( x \right),$$
at least at two points. If $$\int\limits_2^x {g\left( t \right)dt = } \frac{{{x^2}}}{2} + \int\limits_x^2 {{t^2}g\left( t \right)dt} $$ then possible value of $$\alpha $$ is/are –
A
$$\left( { - \frac{1}{2},\,\frac{1}{2}} \right)$$
B
$$\left[ { - \frac{1}{2},\,\frac{1}{2}} \right]$$
C
$$\left( { - \frac{1}{2},\,\frac{1}{2}} \right) - \left\{ 0 \right\}$$
D
$$\left\{ { - \frac{1}{2},\,0,\,\frac{1}{2}} \right\}$$
Answer :
$$\left( { - \frac{1}{2},\,\frac{1}{2}} \right) - \left\{ 0 \right\}$$
View Solution
$$\int\limits_2^x {g\left( t \right)dt = } \frac{{{x^2}}}{2} + \int\limits_x^2 {{t^2}g\left( t \right)dt} $$
Differentiating w.r.t. $$x,$$ we get
$$\eqalign{
& g\left( x \right) = x + \left( { - {x^2}\left( {g\left( x \right)} \right)} \right) \cr
& \Rightarrow g\left( x \right) = \frac{x}{{1 + {x^2}}} \cr} $$
Clearly from graph, $$\alpha \, \in \left( { - \frac{1}{2},\,\frac{1}{2}} \right) - \left\{ 0 \right\}$$