132.
Let $$a,\,b,\,c$$ be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$ has-
A
no root in $$\left( {0,\,2} \right)$$
B
at least one root in $$\left( {0,\,2} \right)$$
C
a double root in $$\left( {0,\,2} \right)$$
D
two imaginary roots
Answer :
at least one root in $$\left( {0,\,2} \right)$$
$$\eqalign{
& {\text{Given,}} \cr
& \int_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx} \cr
& = \int_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx} \cr
& = \int_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx} + \int_1^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx} \cr
& \Rightarrow \int_1^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx} = 0 \cr} $$
Now we know that if $$\int_\alpha ^\beta {f\left( x \right)dx} = 0$$ then it means that $$f\left( x \right)$$ is $$+ve$$ on some part of $$\left( {\alpha ,\,\beta } \right)$$ and $$-ve$$ on other part of $$\left( {\alpha ,\,\beta } \right).$$
But here $${1 + {{\cos }^8}x}$$ is always $$+ve,$$
$$\therefore a{x^2} + bx + c$$ is $$+ve$$ on some part of $$\left[ {1,\,2} \right]$$ and $$-ve$$ on other Part $$\left[ {1,\,2} \right]$$
$$\therefore a{x^2} + bx + c = 0$$ has at least one root in $$\left( {1,\,2} \right)$$.
$$ \Rightarrow a{x^2} + bx + c = 0$$ has at least one root in $$\left( {0,\,2} \right)$$
133.
The integral $$\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {\left( {\left[ x \right] + ln\left( {\frac{{1 + x}}{{1 - x}}} \right)} \right)} dx,$$ equal to-