Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

131. Let $${a_n} = \int_0^{\frac{\pi }{4}} {{{\tan }^n}x\,dx.} $$     Then $${a_2} + {a_4},\,{a_3} + {a_5},\,{a_4} + {a_6}$$     are in :

A AP
B GP
C HP
D none of these
Answer :   HP

132. Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A no root in $$\left( {0,\,2} \right)$$
B at least one root in $$\left( {0,\,2} \right)$$
C a double root in $$\left( {0,\,2} \right)$$
D two imaginary roots
Answer :   at least one root in $$\left( {0,\,2} \right)$$

133. The integral $$\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {\left( {\left[ x \right] + ln\left( {\frac{{1 + x}}{{1 - x}}} \right)} \right)} dx,$$      equal to-

A $$ - \frac{1}{2}$$
B $$0$$
C $$1$$
D $$2\,\ell n\left( {\frac{1}{2}} \right)$$
Answer :   $$ - \frac{1}{2}$$