54.
The value of integral, $$\int\limits_3^6 {\frac{{\sqrt x }}{{\sqrt {9 - x} + \sqrt x }}dx} ,$$ is-
A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$2$$
D
$$1$$
Answer :
$$\frac{3}{2}$$
$$\eqalign{
& I = \int\limits_3^6 {\frac{{\sqrt x }}{{\sqrt {9 - x} + \sqrt x }}dx} .....(1) \cr
& I = \int\limits_3^6 {\frac{{\sqrt {9 - x} }}{{\sqrt {9 - x} + \sqrt x }}dx} .....(2) \cr
& \left[ {{\text{using }}\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} } \right] \cr} $$
using equation (1) and (2)
$$2I = \int\limits_3^6 {dx} = 3\,\, \Rightarrow I = \frac{3}{2}$$
55.
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where $$f$$ is such that $$\frac{1}{2} \leqslant f\left( t \right) \leqslant 1,$$ for $$t \in \left[ {0,\,1} \right]$$ and $$0 \leqslant f\left( t \right) \leqslant \frac{1}{2},$$ for $$t \in \left[ {1,\,2} \right]$$
Then $$g\left( 2 \right)$$ satisfies the inequality -
A
$$ - \frac{3}{2} \leqslant g\left( 2 \right) < \frac{1}{2}$$
B
$$0 \leqslant g\left( 2 \right) < 2$$
C
$$\frac{3}{2} < g\left( 2 \right) \leqslant \frac{5}{2}$$
D
$$2 < g\left( 2 \right) < 4$$
Answer :
$$0 \leqslant g\left( 2 \right) < 2$$
$$\eqalign{
& g\left( x \right) = \int\limits_0^x {f\left( t \right)dt} \cr
& \Rightarrow g\left( 2 \right) = \int\limits_0^2 {f\left( t \right)dt} = \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \cr
& {\text{Now,}}\,\frac{1}{2} \leqslant f\left( t \right) \leqslant 1\,{\text{for }}t \in \left[ {0,\,1} \right] \cr
& {\text{We get }}\int\limits_0^1 {\frac{1}{2}dt} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant \int\limits_0^1 {1dt} \cr} $$
(applying line integral on inequality)
$$\eqalign{
& \Rightarrow \frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} \leqslant 1.....(1) \cr
& {\text{Again, 0}} \leqslant f\left( t \right) \leqslant \frac{1}{2}\,{\text{for }}t \in \left[ {1,\,2} \right] \cr
& {\text{We get }}\int\limits_1^2 {0dt} \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \int\limits_1^2 {\frac{1}{2}dt} \cr} $$
(applying line integral on inequality)
$$ \Rightarrow 0 \leqslant \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{1}{2}.....(2)$$
From (1) and (2), we get
$$\frac{1}{2} \leqslant \int\limits_0^1 {f\left( t \right)dt} + \int\limits_1^2 {f\left( t \right)dt} \leqslant \frac{3}{2}\,\,{\text{or}}\,\,\frac{1}{2} \leqslant g\left( 2 \right) \leqslant \frac{3}{2}$$
$$ \Rightarrow 0 \leqslant g\left( 2 \right) \leqslant 2$$ is the most appropriate solution.
56.
If $${A_n} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin \left( {2n - 1} \right)x}}{{\sin \,x}}dx} \,;\,{B_n} = \int\limits_0^{\frac{\pi }{2}} {{{\left( {\frac{{\sin \,nx}}{{\sin \,x}}} \right)}^2}dx} \,;$$
For $$n\, \in \,{\bf{N}},$$ then :
59.
Let $$I = \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx.} $$ Then which one of the following is true?
A
$$I > \frac{2}{3}{\text{ and }}J > 2$$
B
$$I < \frac{2}{3}{\text{ and }}J < 2$$
C
$$I < \frac{2}{3}{\text{ and }}J > 2$$
D
$$I > \frac{2}{3}{\text{ and }}J < 2$$
Answer :
$$I < \frac{2}{3}{\text{ and }}J < 2$$
$$\eqalign{
& {\text{We know that }}\frac{{\sin \,x}}{x} < 1,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \frac{{\sin \,x}}{{\sqrt x }} < \sqrt x {\text{ on }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \int\limits_0^1 {\sqrt x \,dx = \left[ {\frac{{2{x^{\frac{3}{2}}}}}{3}} \right]_0^1} \cr
& \Rightarrow \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx < } \frac{2}{3} \cr
& \Rightarrow I < \frac{2}{3}{\text{ Also }}\frac{{\cos \,x}}{{\sqrt x }} < \frac{1}{{\sqrt x }}\,\,{\text{for }}x\, \in \left( {0,\,1} \right) \cr
& \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < \int\limits_0^1 {{x^{ - \frac{1}{2}}}} dx = \left[ {2\sqrt x } \right]_0^1 = 2} \cr
& \Rightarrow \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx < 2} \,\,\, \Rightarrow J < 2 \cr} $$
60.
Let $$F\left( x \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {\frac{{\log \,t}}{{1 + t}}dt.} $$ Then $$F\left( e \right)$$ equals :