Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 5,\,x \ne 0,\,a \ne b,$$         then $$\int_1^2 {f\left( x \right)dx} $$   equals :

A $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{13}}{2}b}}{{{a^2} - {b^2}}}$$
B $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
C $$\frac{{\left( {5 - \log \,2} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$
D none of these
Answer :   $$\frac{{\left( {\log \,2 - 5} \right)a + \frac{{7b}}{2}}}{{{a^2} - {b^2}}}$$

52. $$\int\limits_0^\infty {\frac{{dx}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} {\text{ is ?}}$$

A $$\frac{{\pi ab}}{{a + b}}$$
B $$\frac{\pi }{{2\left( {a + b} \right)}}$$
C $$\frac{\pi }{{2ab\left( {a + b} \right)}}$$
D $$\frac{{\pi \left( {a + b} \right)}}{{2ab}}$$
Answer :   $$\frac{\pi }{{2ab\left( {a + b} \right)}}$$

53. $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 0}^{n - 1} {\frac{1}{{\sqrt {{n^2} - {r^2}} }}} $$    is :

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{4}$$
D none of these
Answer :   $$\frac{\pi }{2}$$

54. The value of integral, $$\int\limits_3^6 {\frac{{\sqrt x }}{{\sqrt {9 - x} + \sqrt x }}dx} ,$$     is-

A $$\frac{1}{2}$$
B $$\frac{3}{2}$$
C $$2$$
D $$1$$
Answer :   $$\frac{3}{2}$$

55. Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$    where $$f$$ is such that $$\frac{1}{2} \leqslant f\left( t \right) \leqslant 1,$$    for $$t \in \left[ {0,\,1} \right]$$   and $$0 \leqslant f\left( t \right) \leqslant \frac{1}{2},$$    for $$t \in \left[ {1,\,2} \right]$$
Then $$g\left( 2 \right)$$  satisfies the inequality -

A $$ - \frac{3}{2} \leqslant g\left( 2 \right) < \frac{1}{2}$$
B $$0 \leqslant g\left( 2 \right) < 2$$
C $$\frac{3}{2} < g\left( 2 \right) \leqslant \frac{5}{2}$$
D $$2 < g\left( 2 \right) < 4$$
Answer :   $$0 \leqslant g\left( 2 \right) < 2$$

56. If $${A_n} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin \left( {2n - 1} \right)x}}{{\sin \,x}}dx} \,;\,{B_n} = \int\limits_0^{\frac{\pi }{2}} {{{\left( {\frac{{\sin \,nx}}{{\sin \,x}}} \right)}^2}dx} \,;$$
For $$n\, \in \,{\bf{N}},$$  then :

A $${A_{n + 1}} = {A_n},\,{B_{n + 1}} - {B_n} = {A_{n + 1}}$$
B $${B_{n + 1}} = {B_n}$$
C $${A_{n + 1}} - {A_n} = {B_{n + 1}}$$
D None of these
Answer :   $${A_{n + 1}} = {A_n},\,{B_{n + 1}} - {B_n} = {A_{n + 1}}$$

57. If $$\int\limits_0^\pi {x\,f\left( {\sin \,x} \right)} dx = A\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \,x} \right)} dx,$$       then $$A$$ is-

A $$2\pi $$
B $$\pi $$
C $$\frac{\pi }{4}$$
D $$0$$
Answer :   $$\pi $$

58. $$\int\limits_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]} dx$$   is equal to ( $$\left[ x \right] = $$  greatest integer $$ \leqslant x$$  )

A $${\log _e}2$$
B $${e^2}$$
C $$0$$
D $$\frac{2}{e}$$
Answer :   $${\log _e}2$$

59. Let $$I = \int\limits_0^1 {\frac{{\sin \,x}}{{\sqrt x }}dx} $$    and $$J = \int\limits_0^1 {\frac{{\cos \,x}}{{\sqrt x }}dx.} $$    Then which one of the following is true?

A $$I > \frac{2}{3}{\text{ and }}J > 2$$
B $$I < \frac{2}{3}{\text{ and }}J < 2$$
C $$I < \frac{2}{3}{\text{ and }}J > 2$$
D $$I > \frac{2}{3}{\text{ and }}J < 2$$
Answer :   $$I < \frac{2}{3}{\text{ and }}J < 2$$

60. Let $$F\left( x \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right),$$     where $$f\left( x \right) = \int\limits_l^x {\frac{{\log \,t}}{{1 + t}}dt.} $$    Then $$F\left( e \right)$$  equals :

A $$1$$
B $$2$$
C $$\frac{1}{2}$$
D $$0$$
Answer :   $$\frac{1}{2}$$