Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. The value of $$\int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}{{1 + {a^x}}}dx,\,a > 0,} $$    is-

A $$\pi $$
B $$a \pi $$
C $$\frac{\pi }{2}$$
D $$2\pi $$
Answer :   $$\frac{\pi }{2}$$

62. $$\int_1^{{e^{37}}} {\frac{{\pi \sin \left( {\pi {{\log }_e}x} \right)}}{x}dx} $$     is equal to -

A $$2$$
B $$-2$$
C $$\frac{2}{\pi }$$
D $$2\pi $$
Answer :   $$2$$

63. The value of the integral $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {{x^2} + ln\frac{{\pi + x}}{{\pi - x}}} \right)} \cos x\,dx$$      is-

A $$0$$
B $$\frac{{{\pi ^2}}}{2} - 4$$
C $$\frac{{{\pi ^2}}}{2} + 4$$
D $$\frac{{{\pi ^2}}}{2}$$
Answer :   $$\frac{{{\pi ^2}}}{2} - 4$$

64. The value of $$\int_1^2 {{{\left[ {f\left\{ {g\left( x \right)} \right\}} \right]}^{ - 1}}.f'\left\{ {g\left( x \right)} \right\}.g'\left( x \right)dx,} $$         where $$g\left( 1 \right) = g\left( 2 \right),$$    is equal to :

A 1
B 2
C 0
D none of these
Answer :   0

65. Let $$F\left( x \right) = f\left( x \right) + f\left( {\frac{1}{x}} \right),$$     where $$f\left( x \right) = \int\limits_l^x {\frac{{\log \,t}}{{1 + t}}dt,} $$    Then $$F\left( e \right)$$  equals-

A $$1$$
B $$2$$
C $$\frac{1}{2}$$
D $$0$$
Answer :   $$\frac{1}{2}$$

66. Let $$p\left( x \right)$$  be a function defined on R such that $$p'\left( x \right) = p'\left( {1 - x} \right),$$    for all $$x \in \left[ {0,\,1} \right],p\left( 0 \right) = 1$$    and $$p\left( 1 \right) = 41.$$   Then $$\int\limits_0^1 {p\left( x \right)dx} $$   equals-

A $$21$$
B $$41$$
C $$42$$
D $$\sqrt {41} $$
Answer :   $$21$$

67. $$\int\limits_0^\pi {x\,f\left( {\sin \,x} \right)dx} $$     is equal to :

A $$\pi \int\limits_0^\pi {f\left( {\cos \,x} \right)dx} $$
B $$\pi \int\limits_0^\pi {f\left( {\sin \,x} \right)dx} $$
C $$\frac{\pi }{2}\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \,x} \right)dx} $$
D $$\pi \int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)dx} $$
Answer :   $$\pi \int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \,x} \right)dx} $$

68. The following integral $$\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\left( {2\,{\text{cosec}}\,x} \right)}^{17}}dx} $$    is equal to-

A $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} $$
B $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} + {e^{ - u}}} \right)}^{17}}du} $$
C $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {{{\left( {{e^u} - {e^{ - u}}} \right)}^{17}}du} $$
D $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} - {e^{ - u}}} \right)}^{16}}du} $$
Answer :   $$\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} $$

69. Let $$f\left( x \right) = \int\limits_1^x {\sqrt {2 - {t^2}} } dt.$$     Then the real roots of the equation $${x^2} - f'\left( x \right) = 0$$    are-

A $$ \pm 1$$
B $$ \pm \frac{1}{{\sqrt 2 }}$$
C $$ \pm \frac{1}{2}$$
D $$0$$ and $$1$$
Answer :   $$ \pm 1$$

70. $$\int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {\frac{{\left| x \right|dx}}{{8\,{{\cos }^2}2x + 1}}} $$    has the value :

A $$\frac{{{\pi ^2}}}{6}$$
B $$\frac{{{\pi ^2}}}{{12}}$$
C $$\frac{{{\pi ^2}}}{{24}}$$
D None of these
Answer :   $$\frac{{{\pi ^2}}}{{12}}$$