72.
If for a real number $$y,\,\left[ y \right]$$ is the greatest integer less than or
equal to $$y,$$ then the value of the integral $$\int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left[ {2\,\sin \,x} \right]dx} $$ is-
78.
If $$f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}},\,{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \right)} \right\}dx} $$ and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}dx,} $$ then the value of $$\frac{{{I_2}}}{{{I_1}}}$$ is :
79.
Let $$f:\left[ {\frac{1}{2},\,1} \right] \to R$$ (the set of all real number) be a positive, non-constant and differentiable function such that $$f'\left( x \right) < 2f\left( x \right)$$ and $$f\left( {\frac{1}{2}} \right) = 1.$$ Then the value of $$\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} $$ lies
in the interval-