Definite Integration MCQ Questions & Answers in Calculus | Maths

Learn Definite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The value of $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{{\sin }^2}x}}{{1 + {2^x}}}dx} $$    is :

A $$\frac{\pi }{2}$$
B $$4\pi $$
C $$\frac{\pi }{4}$$
D $$\frac{\pi }{8}$$
Answer :   $$\frac{\pi }{4}$$

72. If for a real number $$y,\,\left[ y \right]$$  is the greatest integer less than or equal to $$y,$$ then the value of the integral $$\int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left[ {2\,\sin \,x} \right]dx} $$    is-

A $$ - \pi $$
B $$0$$
C $$\frac{{ - \pi }}{2}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{{ - \pi }}{2}$$

73. If $${I_1} = \int\limits_0^\pi {x\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} $$       and $${I_2} = \pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx,} $$       then :

A $${I_1} = 2{I_2}$$
B $$2{I_1} = {I_2}$$
C $${I_1} = {I_2}$$
D $${I_1} + {I_2} = 0$$
Answer :   $${I_1} = {I_2}$$

74. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{2^k} + {4^k} + {6^k} + ..... + {{\left( {2n} \right)}^k}}}{{{n^{k + 1}}}},\,k \ne 1,$$         is equal to :

A $${2^k}$$
B $$\frac{{{2^k}}}{{k + 1}}$$
C $$\frac{1}{{k + 1}}$$
D none of these
Answer :   $$\frac{{{2^k}}}{{k + 1}}$$

75. The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A $$ - 1$$
B $$2$$
C $$1 + {e^{ - 1}}$$
D none of these
Answer :   none of these

76. $$\int_{ - \pi }^\pi {\frac{{2x\left( {1 + \sin \,x} \right)}}{{1 + {{\cos }^2}\,x}}dx} $$     is-

A $$\frac{{{\pi ^2}}}{4}$$
B $${\pi ^2}$$
C zero
D $$\frac{\pi }{2}$$
Answer :   $${\pi ^2}$$

77. $$\int\limits_0^2 {\left[ {{x^2}} \right]dx} $$   is-

A $$2 - \sqrt 2 $$
B $$2 + \sqrt 2 $$
C $$\sqrt 2 - 1$$
D $$ - \sqrt 2 - \sqrt 3 + 5$$
Answer :   $$ - \sqrt 2 - \sqrt 3 + 5$$

78. If $$f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}},\,{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \right)} \right\}dx} $$         and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}dx,} $$      then the value of $$\frac{{{I_2}}}{{{I_1}}}$$  is :

A $$1$$
B $$ - 3$$
C $$ - 1$$
D $$2$$
Answer :   $$2$$

79. Let $$f:\left[ {\frac{1}{2},\,1} \right] \to R$$     (the set of all real number) be a positive, non-constant and differentiable function such that $$f'\left( x \right) < 2f\left( x \right)$$    and $$f\left( {\frac{1}{2}} \right) = 1.$$    Then the value of $$\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} $$   lies in the interval-

A $$\left( {2e - 1,\,2e} \right)$$
B $$\left( {e - 1,\,2e - 1} \right)$$
C $$\left( {\frac{{e - 1}}{2},\,e - 1} \right)$$
D $$\left( {0,\,\frac{{e - 1}}{2}} \right)$$
Answer :   $$\left( {0,\,\frac{{e - 1}}{2}} \right)$$

80. Solve this : $$\int\limits_0^{2\pi } {\log \left( {\frac{{a + b\,\sec \,x}}{{a - b\,\sec \,x}}} \right)dx = ?} $$

A $$0$$
B $$\frac{\pi }{2}$$
C $$\frac{{\pi \left( {a + b} \right)}}{{a - b}}$$
D $$\frac{\pi }{2}\left( {{a^2} - {b^2}} \right)$$
Answer :   $$0$$