Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
If $$x = {e^{y + {e^{y + .....{\text{to }}\infty }}{\text{ }}}}$$ then $$\frac{{dy}}{{dx}}$$ is :
A
$$\frac{x}{{1 + x}}$$
B
$$\frac{1}{x}$$
C
$$\frac{{1 - x}}{x}$$
D
none of these
Answer :
$$\frac{{1 - x}}{x}$$
$$\eqalign{
& x = {e^{y + x}} \cr
& \Rightarrow \log \,x = y + x \cr
& \therefore \,\frac{1}{x} = \frac{{dy}}{{dx}} + 1 \cr} $$
122.
There exist a function $$f\left( x \right),$$ satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$ for all $$x,$$ and-
A
$$f''\left( x \right) > 0$$ for all $$x$$
B
$$ - 1 < f''\left( x \right) < 0$$ for all $$x$$
C
$$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$ for all $$x$$
D
$$f''\left( x \right) < - 2$$ for all $$x$$
Answer :
$$f''\left( x \right) > 0$$ for all $$x$$
$$f\left( x \right) = {e^{ - x}}$$ is one such function
$$\eqalign{
& {\text{Here}}\,\,f\left( 0 \right) = 1,\,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0,\,\forall \,x \cr
& \therefore \,f''\left( x \right) > 0\,\forall \,x \cr} $$
123.
For $$x\,I\,{ R},\,f\left( x \right) = \left| {\log \,2 - \sin \,x} \right|$$ and $$g\left( x \right) = f\left( {f\left( x \right)} \right),$$ then :
125.
Let $$f:R \to R$$ be a differentiable function and $$f\left( 1 \right) = 4.$$ Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$ is-
126.
Let $$f\left( x \right) = \left[ x \right],\,g\left( x \right) = \left| x \right|$$ and $$f\left\{ {g\left( x \right)} \right\} = h\left( x \right),$$ where $$\left[ . \right]$$ is the greatest integer function. Then $$h'\left( { - 1} \right)$$ is :
129.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \max \left\{ {x,\,{x^3}} \right\}.$$ The set of all points where $$f\left( x \right)$$ is NOT differentiable is :
A
$$\left\{ { - 1,\,1} \right\}$$
B
$$\left\{ { - 1,\,0} \right\}$$
C
$$\left\{ {0,\,1} \right\}$$
D
$$\left\{ { - 1,\,0,\,1} \right\}$$
Answer :
$$\left\{ { - 1,\,0,\,1} \right\}$$
\[\begin{array}{l}
f\left( x \right) = \max \left\{ {x,\,{x^3}} \right\}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left\{ \begin{array}{l}
\,x\,\,;\,\,\,\,\,\,\,\,\,\,\,\,x < - 1\\
{x^3}\,;\,\,\,\, - 1 \le x \le 0\\
\,x\,\,;\,\,\,\,\,\,\,0 \le x \le 1\\
{x^3}\,;\,\,\,\,\,\,\,\,\,\,\,\,x \ge 1
\end{array} \right.\\
\therefore \,f'\left( x \right) = \left\{ \begin{array}{l}
\,1\,\,;\,\,\,\,\,\,\,\,\,\,\,\,x < - 1\\
3{x^2}\,;\,\,\,\, - 1 \le x \le 0\\
\,1\,\,;\,\,\,\,\,\,\,0 \le x \le 1\\
3{x^2}\,;\,\,\,\,\,\,\,\,\,\,\,\,x \ge 1
\end{array} \right.
\end{array}\]
Clearly $$f$$ is not differentiable at $$ - 1,\,0$$ and $$1.$$
130.
If $$f\left( x \right) = \sin \,\pi \left[ x \right]$$ then $$f'\left( {1 - 0} \right)$$ is equal to :