Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. If $$x = {e^{y + {e^{y + .....{\text{to }}\infty }}{\text{ }}}}$$    then $$\frac{{dy}}{{dx}}$$  is :

A $$\frac{x}{{1 + x}}$$
B $$\frac{1}{x}$$
C $$\frac{{1 - x}}{x}$$
D none of these
Answer :   $$\frac{{1 - x}}{x}$$

122. There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A $$f''\left( x \right) > 0$$   for all $$x$$
B $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D $$f''\left( x \right) < - 2$$   for all $$x$$
Answer :   $$f''\left( x \right) > 0$$   for all $$x$$

123. For $$x\,I\,{ R},\,f\left( x \right) = \left| {\log \,2 - \sin \,x} \right|$$      and $$g\left( x \right) = f\left( {f\left( x \right)} \right),$$    then :

A $$g'\left( 0 \right) = - \cos \left( {\log \,2} \right)$$
B $$g$$ is differentiable at $$x = 0$$  and $$g'\left( 0 \right) = - \sin \left( {\log \,2} \right)$$
C $$g$$ is not differentiable at $$x =0$$
D $$g'\left( 0 \right) = \cos \left( {\log \,2} \right)$$
Answer :   $$g'\left( 0 \right) = \cos \left( {\log \,2} \right)$$

124. $$\mathop {\lim }\limits_{x \to 0} \frac{{\sin \left( {\pi \,{{\cos }^2}\,x} \right)}}{{{x^2}}}$$     equals-

A $$ - \pi $$
B $$\pi $$
C $$\frac{\pi }{2}$$
D $$1$$
Answer :   $$\pi $$

125. Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A $$8f'\left( 1 \right)$$
B $$4f'\left( 1 \right)$$
C $$2f'\left( 1 \right)$$
D $$f'\left( 1 \right)$$
Answer :   $$8f'\left( 1 \right)$$

126. Let $$f\left( x \right) = \left[ x \right],\,g\left( x \right) = \left| x \right|$$     and $$f\left\{ {g\left( x \right)} \right\} = h\left( x \right),$$    where $$\left[ . \right]$$ is the greatest integer function. Then $$h'\left( { - 1} \right)$$  is :

A 0
B $$ - \infty $$
C nonexistent
D none of these
Answer :   nonexistent

127. If $$y = f\left( {\frac{{2x - 1}}{{{x^2} + 1}}} \right)$$   and $$f'\left( x \right) = \sin \,{x^2},$$    then $$\frac{{dy}}{{dx}}$$  is :

A $$\sin {\left( {\frac{{2x - 1}}{{{x^2} + 1}}} \right)^2}$$
B $$\frac{{2\left( {1 + x - {x^2}} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\sin {\left( {\frac{{2x - 1}}{{{x^2} + 1}}} \right)^2}$$
C $$\frac{{2\left( {2x - 1} \right)}}{{{x^2} + 1}}\sin {\left( {\frac{{2x - 1}}{{{x^2} + 1}}} \right)^2}$$
D none of these
Answer :   $$\frac{{2\left( {1 + x - {x^2}} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\sin {\left( {\frac{{2x - 1}}{{{x^2} + 1}}} \right)^2}$$

128. If \[f\left( x \right) = \left\{ \begin{array}{l} x{e^{ - \left( {\frac{1}{{\left| x \right|}} + \frac{1}{x}} \right)}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\]       Then $$f\left( x \right)$$  is-

A discontinuous every where
B continuous as well as differentiable for all $$x$$
C continuous for all $$x$$ but not differentiable at $$x =0$$
D neither differentiable nor continuous at $$x =0$$
Answer :   continuous for all $$x$$ but not differentiable at $$x =0$$

129. Let $$f:R \to R$$   be a function defined by $$f\left( x \right) = \max \left\{ {x,\,{x^3}} \right\}.$$    The set of all points where $$f\left( x \right)$$  is NOT differentiable is :

A $$\left\{ { - 1,\,1} \right\}$$
B $$\left\{ { - 1,\,0} \right\}$$
C $$\left\{ {0,\,1} \right\}$$
D $$\left\{ { - 1,\,0,\,1} \right\}$$
Answer :   $$\left\{ { - 1,\,0,\,1} \right\}$$

130. If $$f\left( x \right) = \sin \,\pi \left[ x \right]$$    then $$f'\left( {1 - 0} \right)$$   is equal to :

A $$-1$$
B $$0$$
C $$1$$
D none of these
Answer :   $$0$$