Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
The degree and order of the differential equation of the family of all parabolas whose axis is the $$x$$-axis, are respectively :
A
$$1,\,2$$
B
$$3,\,2$$
C
$$2,\,3$$
D
$$2,\,1$$
Answer :
$$1,\,2$$
The equation of the family is $${y^2} = 4a\left( {x - b} \right)$$ where $$a,\,b$$ are arbitrary constants.
$$\therefore 2y\frac{{dy}}{{dx}} = 4a\,\,{\text{or}}\,{\text{ }}{\left( {\frac{{dy}}{{dx}}} \right)^2} + y\frac{{{d^2}y}}{{d{x^2}}} = 0$$
So, degree $$=1$$ and order $$=2$$
92.
The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{2yx}}{{1 + {x^2}}} = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}{\text{ is :}}$$
A
$$y\left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
B
$$\frac{y}{{1 + {x^2}}} = c + {\tan ^{ - 1}}x$$
C
$$y\,\log \left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
D
$$y\left( {1 + {x^2}} \right) = c + {\sin ^{ - 1}}x$$
Given differential equation is $$\frac{{dy}}{{dx}} + \frac{{2yx}}{{1 + {x^2}}} = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}$$ which is a linear.
Differential equation of the form: $$\frac{{dy}}{{dx}} + Py = Q$$
On comparing, we have
$$\eqalign{
& P = \frac{{2x}}{{1 + {x^2}}}{\text{ and }}Q = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{{2x}}{{1 + {x^2}}}dx} }} = {e^{\log \left( {1 + {x^2}} \right)}} = \left( {1 + {x^2}} \right) \cr} $$
$$\therefore $$ Solution is
$$\eqalign{
& y\left( {1 + {x^2}} \right) = \int {\frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}} \left( {1 + {x^2}} \right)dx + c \cr
& \Rightarrow y\left( {1 + {x^2}} \right) = \int {\frac{1}{{\left( {1 + {x^2}} \right)}}} dx + c \cr
& \Rightarrow y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x + c \cr} $$
93.
Let $$y\left( x \right)$$ be the solution of the differential equation $$\left( {x\,\log \,x} \right)\frac{{dy}}{{dx}} + y = 2x\,\log \,x,\,\left( {x \geqslant 1} \right).$$ Then $$y\left( e \right)$$ is equal to:
95.
The equation of the curve passing through the point $$\left( {0,\,\frac{\pi }{4}} \right)$$ whose differential equation is $$\sin \,x\,\cos \,y\,dx + \cos \,x\,\sin \,y\,dy = 0,$$ is :
A
$$\sec \,x\,\sec \,y = \sqrt 2 $$
B
$$\cos \,x\,\cos \,y = \sqrt 2 $$
C
$$\sec \,x = \sqrt 2 \,\cos \,y$$
D
$$\cos \,y = \sqrt 2 \,\sec \,y$$
Answer :
$$\sec \,x\,\sec \,y = \sqrt 2 $$
The given differential equation is $$\sin \,x\,\cos \,y\,dx + \cos \,x\,\sin \,y\,dy = 0$$
dividing by $$\cos \,x\,\cos \,y$$
$$ \Rightarrow \frac{{\sin \,x}}{{\cos \,x}}dx + \frac{{\sin \,y}}{{\cos \,y}}dy = 0$$
Integrating,
$$\eqalign{
& \int {\tan \,x\,dx} + \int {\tan \,y\,dy} = \log \,c \cr
& {\text{or }}\log \,\sec \,x\,\sec \,y = \log \,c \cr
& {\text{or }}\sec \,x\,\sec \,y = c \cr} $$
curve passes through the point $$\left( {0,\,\frac{\pi }{4}} \right)$$
$$\sec \,0\,\sec \frac{\pi }{4} = c = \sqrt 2 $$
Hence, the required equation of the curve is $$\sec \,x\,\sec \,y = \sqrt 2 .$$
96.
If $$y + x\frac{{dy}}{{dx}} = x\frac{{\phi \left( {xy} \right)}}{{\phi '\left( {xy} \right)}}$$ then $$\phi \left( {xy} \right)$$ is equation to :
A
$$k{e^{\frac{{{x^2}}}{2}}}$$
B
$$k{e^{\frac{{{y^2}}}{2}}}$$
C
$$k{e^{\frac{{xy}}{2}}}$$
D
$$k{e^{xy}}$$
Answer :
$$k{e^{\frac{{{x^2}}}{2}}}$$
$$\eqalign{
& {\text{Put }}xy = v \cr
& \therefore \,y + x\frac{{dy}}{{dx}} = \frac{{dv}}{{dx}} \Rightarrow \frac{{dv}}{{dx}} = x\frac{{\phi \left( v \right)}}{{\phi '\left( v \right)}} \cr
& \therefore \,\frac{{\phi '\left( v \right)}}{{\phi \left( v \right)}}dv = x\,dx \cr
& {\text{Integrating, we get}} \cr
& \log \,\phi \left( v \right) = \frac{{{x^2}}}{2} + \log \,k \cr
& \Rightarrow \log \frac{{\phi \left( v \right)}}{k} = \frac{{{x^2}}}{2}{\text{ or }}\phi \left( v \right) = k{e^{\frac{{{x^2}}}{2}}} \cr
& \Rightarrow \phi \left( {xy} \right) = k{e^{\frac{{{x^2}}}{2}}} \cr} $$
97.
If $$y = y\left( x \right)$$ satisfies the differential equation $$8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)^{ - 1}}dx,\,\,x > 0$$ and $$y\left( 0 \right) = \sqrt 7 ,$$ then $$y\left( {256} \right) = $$
A
$$3$$
B
$$9$$
C
$$16$$
D
$$80$$
Answer :
$$3$$
Given DE can be written as
$$\eqalign{
& \int {dy} = \int {\frac{1}{{\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)\left( {\sqrt {9 + \sqrt x } } \right)8\sqrt x }}dx} \cr
& {\text{Putting }}\sqrt {4 + \sqrt {9 + \sqrt x } } = t,\,{\text{We get}} \cr
& \frac{1}{{2\sqrt {4 + \sqrt {9 + \sqrt x } } .\,2\sqrt {9 + \sqrt x } .\,2\sqrt x }}dx = dt \cr
& \therefore \int {dy = \int {dt\,\,\,\,\,\,\,\,\, \Rightarrow y = t + c} } \cr
& {\text{or}},y = \sqrt {4 + \sqrt {9 + \sqrt x } } + C \cr
& y\left( 0 \right) = \sqrt 7 \,\,\, \Rightarrow C = 0 \cr
& \therefore y = \sqrt {4 + \sqrt {9 + \sqrt x } } \cr
& \therefore y\left( {256} \right) = 3 \cr} $$
98.
An integrating factor of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + 2\,y\,\cos \,x = 1$$ is :
99.
If $$x\frac{{dy}}{{dx}} + y = x.\frac{{f\left( {x.y} \right)}}{{f'\left( {x.y} \right)}}$$ then $$f\left( {x.y} \right)$$ is equal to ($$k$$ being an arbitrary constant) :