Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

91. The degree and order of the differential equation of the family of all parabolas whose axis is the $$x$$-axis, are respectively :

A $$1,\,2$$
B $$3,\,2$$
C $$2,\,3$$
D $$2,\,1$$
Answer :   $$1,\,2$$

92. The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{2yx}}{{1 + {x^2}}} = \frac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}{\text{ is :}}$$

A $$y\left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
B $$\frac{y}{{1 + {x^2}}} = c + {\tan ^{ - 1}}x$$
C $$y\,\log \left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$
D $$y\left( {1 + {x^2}} \right) = c + {\sin ^{ - 1}}x$$
Answer :   $$y\left( {1 + {x^2}} \right) = c + {\tan ^{ - 1}}x$$

93. Let $$y\left( x \right)$$ be the solution of the differential equation $$\left( {x\,\log \,x} \right)\frac{{dy}}{{dx}} + y = 2x\,\log \,x,\,\left( {x \geqslant 1} \right).$$       Then $$y\left( e \right)$$  is equal to:

A $$2$$
B $$2e$$
C $$e$$
D $$0$$
Answer :   $$2$$

94. If $$x\frac{{dy}}{{dx}} = y\left( {\log \,y - \log \,x + 1} \right),$$       then the solution of the equation is-

A $$y\,\log \left( {\frac{x}{y}} \right) = cx$$
B $$x\,\log \left( {\frac{y}{x}} \right) = cy$$
C $$\log \left( {\frac{y}{x}} \right) = cx$$
D $$\log \left( {\frac{x}{y}} \right) = cy$$
Answer :   $$\log \left( {\frac{y}{x}} \right) = cx$$

95. The equation of the curve passing through the point $$\left( {0,\,\frac{\pi }{4}} \right)$$  whose differential equation is $$\sin \,x\,\cos \,y\,dx + \cos \,x\,\sin \,y\,dy = 0,$$       is :

A $$\sec \,x\,\sec \,y = \sqrt 2 $$
B $$\cos \,x\,\cos \,y = \sqrt 2 $$
C $$\sec \,x = \sqrt 2 \,\cos \,y$$
D $$\cos \,y = \sqrt 2 \,\sec \,y$$
Answer :   $$\sec \,x\,\sec \,y = \sqrt 2 $$

96. If $$y + x\frac{{dy}}{{dx}} = x\frac{{\phi \left( {xy} \right)}}{{\phi '\left( {xy} \right)}}$$     then $$\phi \left( {xy} \right)$$  is equation to :

A $$k{e^{\frac{{{x^2}}}{2}}}$$
B $$k{e^{\frac{{{y^2}}}{2}}}$$
C $$k{e^{\frac{{xy}}{2}}}$$
D $$k{e^{xy}}$$
Answer :   $$k{e^{\frac{{{x^2}}}{2}}}$$

97. If $$y = y\left( x \right)$$   satisfies the differential equation $$8\sqrt x \left( {\sqrt {9 + \sqrt x } } \right)dy = {\left( {\sqrt {4 + \sqrt {9 + \sqrt x } } } \right)^{ - 1}}dx,\,\,x > 0$$           and $$y\left( 0 \right) = \sqrt 7 ,$$   then $$y\left( {256} \right) = $$

A $$3$$
B $$9$$
C $$16$$
D $$80$$
Answer :   $$3$$

98. An integrating factor of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + 2\,y\,\cos \,x = 1$$     is :

A $${\sin ^2}x$$
B $$\frac{2}{{\sin \,x}}$$
C $$\log \left| {\sin \,x} \right|$$
D $$\frac{1}{{{{\sin }^2}x}}$$
Answer :   $${\sin ^2}x$$

99. If $$x\frac{{dy}}{{dx}} + y = x.\frac{{f\left( {x.y} \right)}}{{f'\left( {x.y} \right)}}$$     then $$f\left( {x.y} \right)$$   is equal to ($$k$$ being an arbitrary constant) :

A $$k{e^{\frac{{{x^2}}}{2}}}$$
B $$k{e^{\frac{{{y^2}}}{2}}}$$
C $$k{e^{\frac{{xy}}{2}}}$$
D none of these
Answer :   $$k{e^{\frac{{{x^2}}}{2}}}$$

100. The function $$f\left( \theta \right) = \frac{d}{{d\theta }}\int\limits_0^\theta {\frac{{dx}}{{1 - \cos \,\theta \,\cos \,x}}} $$       satisfies the differential equation :

A $$\frac{{df}}{{d\theta }} + 2f\left( \theta \right)\cot \,\theta = 0$$
B $$\frac{{df}}{{d\theta }} - 2f\left( \theta \right)\cot \,\theta = 0$$
C $$\frac{{df}}{{d\theta }} + 2f\left( \theta \right) = 0$$
D $$\frac{{df}}{{d\theta }} - 2f\left( \theta \right) = 0$$
Answer :   $$\frac{{df}}{{d\theta }} + 2f\left( \theta \right)\cot \,\theta = 0$$