Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. The solution of differential equation $$yy' = x\left( {\frac{{{y^2}}}{{{x^2}}} + \frac{{f\left( {\frac{{{y^2}}}{{{x^2}}}} \right)}}{{f'\left( {\frac{{{y^2}}}{{{x^2}}}} \right)}}} \right)$$     is :

A $$f\left( {\frac{{{y^2}}}{{{x^2}}}} \right) = c{x^2}$$
B $${x^2}f\left( {\frac{{{y^2}}}{{{x^2}}}} \right) = {c^2}{y^2}$$
C $${x^2}f\left( {\frac{{{y^2}}}{{{x^2}}}} \right) = c$$
D $$f\left( {\frac{{{y^2}}}{{{x^2}}}} \right) = \frac{{cy}}{x}$$
Answer :   $$f\left( {\frac{{{y^2}}}{{{x^2}}}} \right) = c{x^2}$$

102. If $$\frac{{dy}}{{dx}} = y + 3 > 0$$    and $$y\left( 0 \right) = 2,$$   then $$y\left( {\ln \,2} \right)$$  is equal to:

A 5
B 13
C $$-2$$
D 7
Answer :   7

103. The equation of the curve satisfying $$x\,dy - y\,dx = \sqrt {{x^2} - {y^2}} $$     and $$y\left( 1 \right) = 0$$   is :

A $$y = {x^2}\log \left( {\sin \,x} \right)$$
B $$y = x\,\sin \left( {\log \,x} \right)$$
C $${y^2} = x{\left( {x - 1} \right)^2}$$
D $$y = 2{x^2}\left( {x - 1} \right)$$
Answer :   $$y = x\,\sin \left( {\log \,x} \right)$$

104. The general solution of $$\left( {x + 1} \right)\frac{{dy}}{{dx}} + 1 = 2{e^{ - y}}$$     is :

A $${e^y}\left( {x + 1} \right) = x + C$$
B $${e^{ - y}} = 2x + C$$
C $${e^y}\left( {x + 1} \right) = 2x + C$$
D $${e^y}\left( {x + 1} \right) = C$$
Answer :   $${e^y}\left( {x + 1} \right) = 2x + C$$

105. The solution to of the differential equation $$\left( {x + 1} \right)\frac{{dy}}{{dx}} - y = {e^{3x}}{\left( {x + 1} \right)^2}{\text{ is :}}$$

A $$y = \left( {x + 1} \right){e^{3x}} + c$$
B $$3y = \left( {x + 1} \right) + {e^{3x}} + c$$
C $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$
D $$y{e^{ - 3x}} = 3\left( {x + 1} \right) + c$$
Answer :   $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$

106. The population $$p\left( t \right)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $$\frac{{dp\left( t \right)}}{{dt}} = 0.5\,p\left( t \right) - 450.$$     If $$p\left( 0 \right) = 850,$$   then the time at which the population becomes zero is :

A $$2\ln \,18$$
B $$\ln \,9$$
C $$\frac{1}{2}\ln \,18$$
D $$\ln \,18$$
Answer :   $$2\ln \,18$$

107. Let $$\frac{{df\left( x \right)}}{{dx}} = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$     If $$\int_1^4 {\frac{{3{e^{\sin \,{x^3}}}}}{x}dx = f\left( k \right) - f\left( 1 \right)} $$       then one of the possible values of $$k$$ is :

A 16
B 63
C 64
D 15
Answer :   64

108. The solution of $$\frac{{dy}}{{dx}} = \frac{{{e^x}\left( {{{\sin }^2}x + \sin \,2x} \right)}}{{y\left( {2\,\log \,y + 1} \right)}}{\text{ is :}}$$

A $${y^2}\left( {\log \,y} \right) - {e^x}{\sin ^2}x + c = 0$$
B $${y^2}\left( {\log \,y} \right) - {e^x}{\cos ^2}x + c = 0$$
C $${y^2}\left( {\log \,y} \right) + {e^x}{\cos ^2}x + c = 0$$
D none of these
Answer :   $${y^2}\left( {\log \,y} \right) - {e^x}{\sin ^2}x + c = 0$$

109. A function $$y = f\left( x \right)$$   satisfies the condition $$f'\left( x \right)\sin \,x + f\left( x \right)\cos \,x = 1,\,f\left( x \right)$$       being bounded when $$x \to 0.$$
If $$l = \int_0^{\frac{\pi }{2}} {f\left( x \right)dx,} $$     then :

A $$\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4}$$
B $$\frac{\pi }{4} < l < \frac{{{\pi ^2}}}{2}$$
C $$1 < l < \frac{\pi }{2}$$
D $$0 < l < 1$$
Answer :   $$\frac{\pi }{2} < l < \frac{{{\pi ^2}}}{4}$$

110. The solution of the differential equation $$x\frac{{dy}}{{dx}} + 2y = {x^2}\,\,\left( {x \ne 0} \right)$$      with $$y\left( 1 \right) = 1,$$   is:

A $$y = \frac{4}{5}{x^3} + \frac{1}{{5{x^2}}}$$
B $$y = \frac{{{x^3}}}{5} + \frac{1}{{5{x^2}}}$$
C $$y = \frac{{{x^2}}}{4} + \frac{3}{{4{x^2}}}$$
D $$y = \frac{3}{4}{x^2} + \frac{1}{{4{x^2}}}$$
Answer :   $$y = \frac{{{x^2}}}{4} + \frac{3}{{4{x^2}}}$$