Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. The differential equation representing the family of curves $${y^2} = 2c\left( {x + \sqrt c } \right),$$     where $$c > 0,$$   is a parameter, is of order and degree as follows :

A order 1, degree 2
B order 1, degree 1
C order 1, degree 3
D order 2, degree 2
Answer :   order 1, degree 3

112. The solution of the differential equation $$\left\{ {1 + x\sqrt {\left( {{x^2} + {y^2}} \right)} } \right\}dx + \left\{ {\sqrt {\left( {{x^2} + {y^2}} \right)} - 1} \right\}y\,dy = 0{\text{ is :}}$$

A $${x^2} + \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$
B $$x - \frac{{{y^2}}}{3} + \frac{1}{2}{\left( {{x^2} + {y^2}} \right)^{\frac{1}{2}}} = C$$
C $$x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$
D none of these
Answer :   $$x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C$$

113. The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy.dx$$     is $$y = y\left( x \right).$$   If $$y\left( 1 \right) = 1$$   and $$y\left( {{x_0}} \right) = e$$   then $${{x_0}}$$ is :

A $$\sqrt {2\left( {{e^2} - 1} \right)} $$
B $$\sqrt {2\left( {{e^2} + 1} \right)} $$
C $$\sqrt 3 e$$
D $$\sqrt {\frac{1}{2}\left( {{e^2} + 1} \right)} $$
Answer :   $$\sqrt 3 e$$

114. The particular solution of the differential equation $${\sin ^{ - 1}}\left( {\frac{{{d^2}y}}{{d{x^2}}} - 1} \right) = x,$$     where $$y = \frac{{dy}}{{dx}} = 0$$   when $$x = 0,$$  is :

A $$y = {x^2} + x - \sin \,x$$
B $$y = \frac{{{x^2}}}{2} + x - \sin \,x$$
C $$y = \frac{{{x^2}}}{2} + \frac{x}{2} - \sin \,x$$
D $$2y = {x^2} + x - \sin \,x$$
Answer :   $$y = \frac{{{x^2}}}{2} + x - \sin \,x$$

115. The order and degree of the differential equation of the family of ellipses having the same foci, are respectively :

A 1, 1
B 2, 1
C 2, 2
D 1, 2
Answer :   1, 2

116. If $${y^2} = p\left( x \right)$$   is a polynomial of degree $$3,$$ then what is $$2\frac{d}{{dx}}\left[ {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right]$$   equal to ?

A $$p'\left( x \right)p'''\left( x \right)$$
B $$p''\left( x \right)p'''\left( x \right)$$
C $$p\left( x \right)p'''\left( x \right)$$
D A constant
Answer :   $$p\left( x \right)p'''\left( x \right)$$

117. The differential equations of all conics whose axes coincide with the co-ordinate axis :

A $$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} + y\frac{{dy}}{{dx}} = 0$$
B $$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} + x\frac{{dy}}{{dx}} = 0$$
C $$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} - y\frac{{dy}}{{dx}} = 0$$
D $$xy\frac{{{d^2}y}}{{d{x^2}}} - x{\left( {\frac{{dy}}{{dx}}} \right)^2} + y\frac{{dy}}{{dx}} = 0$$
Answer :   $$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} - y\frac{{dy}}{{dx}} = 0$$

118. The general solution of the differential equation $$\frac{{dy}}{{dx}} - \frac{{\tan \,y}}{{1 + x}} = \left( {1 + x} \right){e^x}\sec \,y$$       is :

A $$\sin \left( {1 + x} \right) = y\left( {{e^x} + c} \right)$$
B $$y\,\sin \left( {1 + x} \right) = c{e^x}$$
C $$\left( {1 + x} \right)\sin \,y = {e^x} + c$$
D $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$
Answer :   $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$

119. The solution of $$\left( {y + x + 5} \right)dy = \left( {y - x + 1} \right)dx$$       is :

A $$\log \left( {{{\left( {y + 3} \right)}^2} + {{\left( {x + 2} \right)}^2}} \right) + {\tan ^{ - 1}}\frac{{y + 3}}{{y + 2}} + C$$
B $$\log \left( {{{\left( {y + 3} \right)}^2} + {{\left( {x - 2} \right)}^2}} \right) + {\tan ^{ - 1}}\frac{{y - 3}}{{x - 2}} = C$$
C $$\log \left( {{{\left( {y + 3} \right)}^2} + {{\left( {x + 2} \right)}^2}} \right) + 2\,{\tan ^{ - 1}}\frac{{y + 3}}{{x + 2}} = C$$
D $$\log \left( {{{\left( {y + 3} \right)}^2} + {{\left( {x + 2} \right)}^2}} \right) - 2\,{\tan ^{ - 1}}\frac{{y + 3}}{{x + 2}} = C$$
Answer :   $$\log \left( {{{\left( {y + 3} \right)}^2} + {{\left( {x + 2} \right)}^2}} \right) + 2\,{\tan ^{ - 1}}\frac{{y + 3}}{{x + 2}} = C$$

120. What is the solution of $$\frac{{dy}}{{dx}} + 2y = 1$$   satisfying $$y\left( 0 \right) = 0\,?$$

A $$y = \frac{{1 - {e^{ - 2x}}}}{2}$$
B $$y = \frac{{1 + {e^{ - 2x}}}}{2}$$
C $$y = 1 + {e^x}$$
D $$y = \frac{{1 + {e^x}}}{2}$$
Answer :   $$y = \frac{{1 - {e^{ - 2x}}}}{2}$$