Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
111.
The differential equation representing the family of curves $${y^2} = 2c\left( {x + \sqrt c } \right),$$ where $$c > 0,$$ is a parameter, is of order and degree as follows :
A
order 1, degree 2
B
order 1, degree 1
C
order 1, degree 3
D
order 2, degree 2
Answer :
order 1, degree 3
$$\eqalign{
& {y^2} = 2c\left( {x + \sqrt c } \right)\,.....({\text{i}}) \cr
& 2yy' = 2c.1\,\,{\text{or}}\,\,yy' = c\,.....({\text{ii}}) \cr
& \Rightarrow {y^2} = 2yy'\left( {x + \sqrt {yy'} } \right) \cr} $$
[On putting value of $$c$$ from (ii) in (i)]
On simplifying, we get
$${\left( {y - 2xy'} \right)^2} = 4yy{'^3}\,.....({\text{iii}})$$
Hence equation (iii) is of order 1 and degree 3
112.
The solution of the differential equation $$\left\{ {1 + x\sqrt {\left( {{x^2} + {y^2}} \right)} } \right\}dx + \left\{ {\sqrt {\left( {{x^2} + {y^2}} \right)} - 1} \right\}y\,dy = 0{\text{ is :}}$$
Rearranging the equation, we have
$$\eqalign{
& dx - y\,dy + \sqrt {\left( {{x^2} + {y^2}} \right)} \left( {x\,dx + y\,dy} \right) = 0 \cr
& \Rightarrow dx - y\,dy + \frac{1}{2}\sqrt {\left( {{x^2} + {y^2}} \right)} d\left( {{x^2} + {y^2}} \right) = 0 \cr} $$
On integrating, we get
$$\eqalign{
& x - \frac{{{y^2}}}{2} + \frac{1}{2}\int {\sqrt t \,dt = c,\,\left\{ {t = \sqrt {\left( {{x^2} + {y^2}} \right)} } \right\}} \cr
& {\text{or }}x - \frac{{{y^2}}}{2} + \frac{1}{3}{\left( {{x^2} + {y^2}} \right)^{\frac{3}{2}}} = C \cr} $$
113.
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xy.dx$$ is $$y = y\left( x \right).$$ If $$y\left( 1 \right) = 1$$ and $$y\left( {{x_0}} \right) = e$$ then $${{x_0}}$$ is :
A
$$\sqrt {2\left( {{e^2} - 1} \right)} $$
B
$$\sqrt {2\left( {{e^2} + 1} \right)} $$
C
$$\sqrt 3 e$$
D
$$\sqrt {\frac{1}{2}\left( {{e^2} + 1} \right)} $$
114.
The particular solution of the differential
equation $${\sin ^{ - 1}}\left( {\frac{{{d^2}y}}{{d{x^2}}} - 1} \right) = x,$$ where $$y = \frac{{dy}}{{dx}} = 0$$ when $$x = 0,$$ is :
A
$$y = {x^2} + x - \sin \,x$$
B
$$y = \frac{{{x^2}}}{2} + x - \sin \,x$$
C
$$y = \frac{{{x^2}}}{2} + \frac{x}{2} - \sin \,x$$
D
$$2y = {x^2} + x - \sin \,x$$
Answer :
$$y = \frac{{{x^2}}}{2} + x - \sin \,x$$
The differential equation is $$\frac{{{d^2}y}}{{d{x^2}}} = 1 + \sin \,x.....\left( {\text{i}} \right)$$
Integrating we get $$\frac{{dy}}{{dx}} = x - \cos \,x + c......\left( {{\text{ii}}} \right)$$
When $$x = 0,\,\frac{{dy}}{{dx}} = 0 \Rightarrow c = 1$$
$$\therefore $$ Equation $$\left( {{\text{ii}}} \right)$$ is $$\frac{{dy}}{{dx}} = x - \cos \,x + 1$$
Integrating again we get $$y = \frac{{{x^2}}}{2} - \sin \,x + x + D......\left( {{\text{iii}}} \right)$$
When $$x = 0,\,y = 0\, \Rightarrow D = 0$$
$$\therefore $$ The particular solution is $$y = \frac{{{x^2}}}{2} + x - \sin \,x$$
115.
The order and degree of the differential equation of the family of ellipses having the same foci, are respectively :
A
1, 1
B
2, 1
C
2, 2
D
1, 2
Answer :
1, 2
The equation of the family is $$\frac{{{x^2}}}{{{a^2} + \lambda }} + \frac{{{y^2}}}{{{b^2} + \lambda }} = 1$$ because they have the
same foci $$\left( { \pm \sqrt {{a^2} + {b^2}} ,\,0} \right).$$
On differentiation,
$$\eqalign{
& \frac{{2x}}{{{d^2} + \lambda }} + \frac{{2y}}{{{b^2} + \lambda }}.\frac{{dy}}{{dx}} = 0 \cr
& {\text{or }}\frac{x}{{{a^2} + \lambda }} + \frac{{yp}}{{{b^2} + \lambda }} = 0,\,\,\left( {p = \frac{{dy}}{{dx}}} \right) \cr
& {\text{or }}x\left( {{b^2} + \lambda } \right) + yp\left( {{a^2} + \lambda } \right) = 0 \cr
& \Rightarrow \lambda = \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}} \cr} $$
$$\therefore $$ the differential equation is, $$\eqalign{
& \frac{{{x^2}}}{{{a^2} + \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}}}} + \frac{{{y^2}}}{{{b^2} + \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}}}} = 1 \cr
& {\text{or }}\frac{{x\left( {x + yp} \right)}}{{{a^2} - {b^2}}} + \frac{{y\left( {x + yp} \right)}}{{\left( {{b^2} - {a^2}} \right)p}} = 1 \cr} $$
So, order $$=1$$ and degree $$=2.$$
116.
If $${y^2} = p\left( x \right)$$ is a polynomial of degree $$3,$$ then what is $$2\frac{d}{{dx}}\left[ {{y^3}\frac{{{d^2}y}}{{d{x^2}}}} \right]$$ equal to ?
A
$$p'\left( x \right)p'''\left( x \right)$$
B
$$p''\left( x \right)p'''\left( x \right)$$
C
$$p\left( x \right)p'''\left( x \right)$$
D
A constant
Answer :
$$p\left( x \right)p'''\left( x \right)$$
Given that $${y^2} = p\left( x \right)$$
Differentiating
$$\eqalign{
& \Rightarrow 2y{y_1} = p'\left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\left[ {{\text{here }}{y_1} = \frac{{dy}}{{dx}}} \right] \cr
& \Rightarrow 2{y_1} = \frac{{p'\left( x \right)}}{y} \cr} $$
Differentiating again,
$$\eqalign{
& \Rightarrow 2{y_2} = \frac{{yp''\left( x \right) - p'\left( x \right){y_1}}}{{{y^2}}},\,\,\,\,\,\,\,\,\,\,\left[ {{\text{here }}{y_2} = \frac{{{d^2}y}}{{d{x^2}}}} \right] \cr
& \Rightarrow 2{y_2} = \frac{{yp''\left( x \right) - \frac{{p'\left( x \right).p'\left( x \right)}}{{2y}}}}{{{y^2}}} \cr
& \Rightarrow 2{y_2} = \frac{{2{y^2}p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}}}{{{2y^3}}} \cr
& \Rightarrow 2{y^3}{y_2} = \frac{1}{2}\left[ {2{y^2}p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}} \right] \cr
& \Rightarrow 2{y^3}{y_2} = \frac{1}{2}\left[ {2p\left( x \right)p''\left( x \right) - {{\left( {p'\left( x \right)} \right)}^2}} \right] \cr
& \Rightarrow 2\frac{d}{{dx}}\left( {{y^3}{y_2}} \right) = \frac{1}{2}\left[ {2p'\left( x \right) + 2p\left( x \right)p'''\left( x \right) - 2p'\left( x \right)p''\left( x \right)} \right] \cr
& \Rightarrow 2\frac{d}{{dx}}\left( {{y^3}{y_2}} \right) = p\left( x \right)p'''\left( x \right) \cr} $$
117.
The differential equations of all conics whose axes coincide with the co-ordinate axis :
A
$$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} + y\frac{{dy}}{{dx}} = 0$$
B
$$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} + x\frac{{dy}}{{dx}} = 0$$
C
$$xy\frac{{{d^2}y}}{{d{x^2}}} + x{\left( {\frac{{dy}}{{dx}}} \right)^2} - y\frac{{dy}}{{dx}} = 0$$
D
$$xy\frac{{{d^2}y}}{{d{x^2}}} - x{\left( {\frac{{dy}}{{dx}}} \right)^2} + y\frac{{dy}}{{dx}} = 0$$