Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. The function $$y = f\left( x \right)$$   is the solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{xy}}{{{x^2} - 1}} = \frac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$$     in $$\left( { - 1,\,1} \right)$$  satisfying $$f\left( 0 \right) = 0.$$   Then $$\int\limits_{ - \,\frac{{\sqrt 3 }}{2}}^{\frac{{\sqrt 3 }}{2}} {f\left( x \right)d\left( x \right)} $$   is-

A $$\frac{\pi }{3} - \frac{{\sqrt 3 }}{2}$$
B $$\frac{\pi }{3} - \frac{{\sqrt 3 }}{4}$$
C $$\frac{\pi }{6} - \frac{{\sqrt 3 }}{4}$$
D $$\frac{\pi }{6} - \frac{{\sqrt 3 }}{2}$$
Answer :   $$\frac{\pi }{3} - \frac{{\sqrt 3 }}{4}$$

122. The order and degree of the differential equation $${\left( {1 + 3\frac{{dy}}{{dx}}} \right)^{\frac{2}{3}}} = 4\frac{{{d^3}y}}{{d{x^3}}}$$     are-

A $$\left( {1,\,\frac{2}{3}} \right)$$
B $$\left( {3,\,1} \right)$$
C $$\left( {3,\,3} \right)$$
D $$\left( {1,\,2} \right)$$
Answer :   $$\left( {3,\,3} \right)$$

123. The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{1 - 3y - 3x}}{{1 + x + y}}$$     is :

A $$x + y - \ell n\left| {x + y} \right| = c$$
B $$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$
C $$x + 3y - 2\ell n\left| {1 - x - y} \right| = c$$
D none of these
Answer :   $$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$

124. Consider a differential equation of order $$m$$ and degree $$n.$$ Which one of the following pairs is not feasible ?

A $$\left( {3,\,2} \right)$$
B $$\left( {2,\,\frac{3}{2}} \right)$$
C $$\left( {2,\,4} \right)$$
D $$\left( {2,\,2} \right)$$
Answer :   $$\left( {2,\,\frac{3}{2}} \right)$$

125. The solution to of the differential equation $$\left( {x + 1} \right)\frac{{dy}}{{dx}} - y = {e^{3x}}{\left( {x + 1} \right)^2}{\text{ is :}}$$

A $$y = \left( {x + 1} \right){e^{3x}} + c$$
B $$3y = \left( {x + 1} \right) + {e^{3x}} + c$$
C $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$
D $$y{e^{ - 3x}} = 3\left( {x + 1} \right) + c$$
Answer :   $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$