Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
The function $$y = f\left( x \right)$$ is the solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{xy}}{{{x^2} - 1}} = \frac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$$ in $$\left( { - 1,\,1} \right)$$ satisfying $$f\left( 0 \right) = 0.$$ Then $$\int\limits_{ - \,\frac{{\sqrt 3 }}{2}}^{\frac{{\sqrt 3 }}{2}} {f\left( x \right)d\left( x \right)} $$ is-
122.
The order and degree of the differential equation $${\left( {1 + 3\frac{{dy}}{{dx}}} \right)^{\frac{2}{3}}} = 4\frac{{{d^3}y}}{{d{x^3}}}$$ are-
A
$$\left( {1,\,\frac{2}{3}} \right)$$
B
$$\left( {3,\,1} \right)$$
C
$$\left( {3,\,3} \right)$$
D
$$\left( {1,\,2} \right)$$
Answer :
$$\left( {3,\,3} \right)$$
Given, differential equation as $$1 + 3{\left( {\frac{{dy}}{{dx}}} \right)^{\frac{2}{3}}} = 4\frac{{{d^3}y}}{{d{x^3}}}$$
On cubing the equation on both the sides,
$$\eqalign{
& {\left( {1 + 3{{\left( {\frac{{dy}}{{dx}}} \right)}^{\frac{2}{3}}}} \right)^3} = {\left( {4\frac{{{d^3}y}}{{d{x^3}}}} \right)^3} \cr
& \Rightarrow {\left( {1 + 3\frac{{dy}}{{dx}}} \right)^2} = 64 \times {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^3} \cr} $$
The order of the equation is the highest degree of differential in the equation.
Here it is 3....... (since $$\frac{{{d^3}y}}{{d{x^3}}}$$ exists in the equation)
∴ Order $$=3$$
The degree of the equation is the power of the highest order differential term in the equation.
Here, it is 3........ (since power of $$\frac{{{d^3}y}}{{d{x^3}}}$$ in the equation is 3)
∴ Degree $$=3$$
123.
The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{1 - 3y - 3x}}{{1 + x + y}}$$ is :
A
$$x + y - \ell n\left| {x + y} \right| = c$$
B
$$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$
C
$$x + 3y - 2\ell n\left| {1 - x - y} \right| = c$$
D
none of these
Answer :
$$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$
This is the form in which $$\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}}$$
The given equation can be rewritten as $$\frac{{dy}}{{dx}} = \frac{{1 - 3\left( {x + y} \right)}}{{1 + \left( {x + y} \right)}} = f\left( {x + y} \right)$$
Substitute $$x + y = z \Rightarrow 1 + \frac{{dy}}{{dx}} = \frac{{dz}}{{dx}}$$
The equation then becomes
$$\eqalign{
& \frac{{dz}}{{dx}} - 1 = \frac{{1 - 3z}}{{1 + z}} \cr
& \Rightarrow \frac{{dz}}{{dx}} = \frac{{1 - 3z + 1 + z}}{{1 + z}} \cr
& \Rightarrow \frac{{dz}}{{dx}} = \frac{{2 - 2z}}{{1 + z}} \cr
& \Rightarrow \frac{{1 + z}}{{2\left( {1 - z} \right)}}dz = dx \cr} $$
On integrating we get
$$\eqalign{
& \frac{1}{2}\int {\frac{{1 + z}}{{1 - z}}dz = } \int {dx + a} \cr
& \Rightarrow \frac{1}{2}\int {\left[ {\frac{2}{{1 - z}} - 1} \right]dz = x + a} \cr
& \Rightarrow - \ell n\left| {1 - z} \right| - \frac{1}{2}z = x + a \cr
& \Rightarrow - \ell n\left| {1 - x - y} \right| - \frac{1}{2}\left( {x + y} \right) = x + a \cr
& \Rightarrow - 2\ell n\left| {1 - x - y} \right| - 3x - y = 2a \cr
& \Rightarrow 3x + y + 2\ell n\left| {1 - x - y} \right| = c{\text{ where }}c = - 2a \cr} $$
124.
Consider a differential equation of order $$m$$ and degree $$n.$$ Which one of the following pairs is not feasible ?
A
$$\left( {3,\,2} \right)$$
B
$$\left( {2,\,\frac{3}{2}} \right)$$
C
$$\left( {2,\,4} \right)$$
D
$$\left( {2,\,2} \right)$$
Answer :
$$\left( {2,\,\frac{3}{2}} \right)$$
Degree of differential equation is always a positive integer.
$$\therefore \,\left( {2,\,\frac{3}{2}} \right)$$ can not be the feasible.
125.
The solution to of the differential equation $$\left( {x + 1} \right)\frac{{dy}}{{dx}} - y = {e^{3x}}{\left( {x + 1} \right)^2}{\text{ is :}}$$