Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin?

A $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
B $${\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
C $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
D $${\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
Answer :   $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$

22. What is the degree of the differential equation $$y = x\frac{{dy}}{{dx}} + {\left( {\frac{{dy}}{{dx}}} \right)^{ - 1}}\,?$$

A $$1$$
B $$2$$
C $$ - 1$$
D Degree does not exist.
Answer :   $$2$$

23. The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xydx$$     is $$y = y\left( x \right).$$   If $$y\left( 1 \right) = 1$$   and $$\left( {{x_0}} \right) = e,$$   then $${{x_0}}$$ is equal to-

A $$\sqrt {2\left( {{e^2} - 1} \right)} $$
B $$\sqrt {2\left( {{e^2} + 1} \right)} $$
C $$\sqrt 3 \,e$$
D $$\sqrt {\frac{{{e^2} + 1}}{2}} $$
Answer :   $$\sqrt 3 \,e$$

24. The solution to the differential equation $$\frac{{dy}}{{dx}} = \frac{{yf'\left( x \right) - {y^2}}}{{f\left( x \right)}}$$     where $$f\left( x \right)$$  is a given function is :

A $$f\left( x \right) = y\left( {x + c} \right)$$
B $$f\left( x \right) = cxy$$
C $$f\left( x \right) = c\left( {x + y} \right)$$
D $$yf\left( x \right) = cx$$
Answer :   $$f\left( x \right) = y\left( {x + c} \right)$$

25. The degree of the differential equation $$\frac{{dy}}{{dx}} - x = {\left( {y - x\frac{{dy}}{{dx}}} \right)^{ - 4}}$$       is :

A 2
B 3
C 4
D 5
Answer :   5

26. The general solution of the equation $$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right)\frac{{dy}}{{dx}} = 0$$       is :

A $$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$
B $$x{e^{{{\tan }^{ - 1}}y}} = {\tan ^{ - 1}}y + k$$
C $$x{e^{2{{\tan }^{ - 1}}y}} = {e^{{{\tan }^{ - 1}}y}} + k$$
D $$x = 2 + k{e^{ - {{\tan }^{ - 1}}y}}$$
Answer :   $$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$

27. What is the order of the differential equation $$\frac{{dx}}{{dy}} + \int {y\,dx} = {x^3}\,?$$

A 1
B 2
C 3
D Cannot be determined
Answer :   2

28. The solution of the equation $$\frac{{{d^2}y}}{{d{x^2}}} = {e^{ - 2x}}$$

A $$\frac{{{e^{ - 2x}}}}{4}$$
B $$\frac{{{e^{ - 2x}}}}{4} + cx + d$$
C $$\frac{1}{4}{e^{ - 2x}} + c{x^2} + d$$
D $$\frac{1}{4}{e^{ - 4x}} + cx + d$$
Answer :   $$\frac{{{e^{ - 2x}}}}{4} + cx + d$$

29. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production $$P$$ w.r.t. additional number of workers $$x$$ is given by $$\frac{{dP}}{{dx}} = 100 - 12\sqrt x .$$     If the firm employs 25 more workers, then the new level of production of items is-

A $$2500$$
B $$3000$$
C $$3500$$
D $$4500$$
Answer :   $$3500$$

30. The solution of the differential equation $$x\,\sin \,x\frac{{dy}}{{dx}} + \left( {x\,\cos \,x + \sin \,x} \right)y = \sin \,x.$$
When $$y\left( 0 \right) = 0$$   is :

A $$xy\,\sin \,x = 1 - \cos \,x$$
B $$xy\,\sin \,x + \cos \,x = 0$$
C $$x\,\sin \,x + y\,\cos \,x = 0$$
D $$x\,\sin \,x + y\,\cos \,x = 1$$
Answer :   $$xy\,\sin \,x = 1 - \cos \,x$$