Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

31. What is the degree of the differential equation $${\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} + 4 - 3\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right) + 5\left( {\frac{{dy}}{{dx}}} \right) = 0\,?$$

A $$3$$
B $$2$$
C $$\frac{2}{3}$$
D Not defined
Answer :   $$2$$

32. The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{y}{x}\log \,y = \frac{y}{{{x^2}}}{\left( {\log \,y} \right)^2}$$       is :

A $$y = \log \left( {{x^2} + cx} \right)$$
B $$\log \,y = x\left( {c{x^2} + \frac{1}{2}} \right)$$
C $$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$
D none of these
Answer :   $$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$

33. The order and degree of the differential equation of parabolas having vertex at the origin and focus at $$\left( {a,\,0} \right)$$  where $$a > 0,$$  are respectively :

A $$1,\,1$$
B $$2,\,1$$
C $$1,\,2$$
D $$2,\,2$$
Answer :   $$1,\,1$$

34. If for the differential equation $$y' = \frac{y}{x} + \phi \left( {\frac{x}{y}} \right),$$     the general solution is $$y = \frac{x}{{\log \left| {Cx} \right|}}$$   then $$\phi \left( {\frac{x}{y}} \right)$$  is given by :

A $$ - \frac{{{x^2}}}{{{y^2}}}$$
B $$\frac{{{y^2}}}{{{x^2}}}$$
C $$\frac{{{x^2}}}{{{y^2}}}$$
D $$ - \frac{{{y^2}}}{{{x^2}}}$$
Answer :   $$ - \frac{{{y^2}}}{{{x^2}}}$$

35. The solution of the equation $$\frac{{dy}}{{dx}} = \sqrt {\frac{{1 - {y^2}}}{{1 - {x^2}}}} $$    is :

A $${\sin ^{ - 1}}y - {\sin ^{ - 1}}x = c$$
B $${\sin ^{ - 1}}y\,{\sin ^{ - 1}}x = c$$
C $${\sin ^{ - 1}}\left( {xy} \right) = 2$$
D none of these
Answer :   $${\sin ^{ - 1}}y - {\sin ^{ - 1}}x = c$$

36. A continuously differentiable function $$\phi \left( x \right),\,x\, \in \left[ {0,\,\pi } \right] - \left\{ {\frac{\pi }{2}} \right\}$$     satisfying $$y' = 1 + {y^2},\,y\left( 0 \right) = 0 = y\left( \pi \right)$$       is :

A $$\tan \,x$$
B $$x\left( {x - \pi } \right)$$
C $$\left( {x - \pi } \right)\left( {1 - {e^x}} \right)$$
D $${\sec ^2}x$$
Answer :   $$\tan \,x$$

37. The differential equation $$\phi \left( x \right)dy = y\left\{ {\phi '\left( x \right) - y} \right\}dx$$       is changed in the form $$df\left( {x,\,y} \right) = 0.$$   Then $$f\left( {x,\,y} \right)$$   is :

A $$\frac{1}{2}\phi \left( x \right) + y$$
B $$\frac{1}{y}\phi \left( x \right) - x$$
C $$\frac{1}{y}\phi \left( x \right) + x$$
D $$\frac{{\phi \left( x \right)}}{y}$$
Answer :   $$\frac{1}{y}\phi \left( x \right) - x$$

38. The differential equation $$\left( {1 + {y^2}} \right)x\,dx - \left( {1 + {x^2}} \right)y\,dy = 0$$       represents a family of :

A ellipses of constant eccentricity
B ellipses of variable eccentricity
C hyperbolas of constant eccentricity
D hyperbolas of variable eccentricity
Answer :   hyperbolas of variable eccentricity

39. The differential equation of family of curves whose tangent form an angle of $$\frac{\pi }{4}$$ with the hyperbola $$xy = {C^2}$$   is :

A $$\frac{{dy}}{{dx}} = \frac{{{x^2} + {C^2}}}{{{x^2} - {C^2}}}$$
B $$\frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}}$$
C $$\frac{{dy}}{{dx}} = - \frac{{{C^2}}}{{{x^2}}}$$
D none of these
Answer :   $$\frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}}$$

40. What is the solution of the differential equation $$\frac{{dx}}{{dy}} + \frac{x}{y} - {y^2} = 0\,?$$
where $$c$$ is an arbitrary constant

A $$xy = {x^4} + c$$
B $$xy = {y^4} + c$$
C $$4xy = {y^4} + c$$
D $$3xy = {y^3} + c$$
Answer :   $$4xy = {y^4} + c$$