Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. A differential equation associated with the primitive $$y = a + b{e^{5x}} + c{e^{ - 7x}}$$     is :

A $${y_3} + 2{y_2} - {y_1} = 0$$
B $${y_3} + 2{y_2} - 35{y_1} = 0$$
C $$4{y_3} + 5{y_2} - 20{y_1} = 0$$
D none of these
Answer :   $${y_3} + 2{y_2} - 35{y_1} = 0$$

42. The expression which is the general solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{x}{{1 - {x^2}}}y = x\sqrt y $$      is :

A $$\sqrt y + \frac{1}{3}\left( {1 - {x^2}} \right) = c{\left( {1 - {x^2}} \right)^{\frac{1}{4}}}$$
B $$y{\left( {1 - {x^2}} \right)^{\frac{1}{4}}} = c\left( {1 - {x^2}} \right)$$
C $$\sqrt y {\left( {1 - {x^2}} \right)^{\frac{1}{4}}} = \frac{1}{3}\left( {1 - {x^2}} \right) + c$$
D none of these
Answer :   $$\sqrt y + \frac{1}{3}\left( {1 - {x^2}} \right) = c{\left( {1 - {x^2}} \right)^{\frac{1}{4}}}$$

43. The general solution the differential equation $$\frac{{dy}}{{dx}} - \frac{{\tan \,y}}{{1 + x}} = \left( {1 + x} \right){e^x}\sec \,y{\text{ is :}}$$

A $$\sin \left( {1 + x} \right) = y\left( {{e^x} + c} \right)$$
B $$y\,\sin \left( {1 + x} \right) = c{e^x}$$
C $$\left( {1 + x} \right)\sin \,y = {e^x} + c$$
D $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$
Answer :   $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$

44. The differential equation of all circles passing through the origin and having their centres on the $$x$$-axis is-

A $${y^2} = {x^2} + 2xy\frac{{dy}}{{dx}}$$
B $${y^2} = {x^2} - 2xy\frac{{dy}}{{dx}}$$
C $${x^2} = {y^2} + xy\frac{{dy}}{{dx}}$$
D $${x^2} = {y^2} + 3xy\frac{{dy}}{{dx}}$$
Answer :   $${y^2} = {x^2} + 2xy\frac{{dy}}{{dx}}$$

45. If $$y\left( t \right)$$  is a solution of the equation $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1$$   then $$y\left( 1 \right)$$  is :

A $$ - \frac{1}{2}$$
B $$e + \frac{1}{2}$$
C $$e - \frac{1}{2}$$
D $$ - \frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$

46. The marginal cost of manufacturing a certain item is given by $$c'\left( x \right) = \frac{{dc}}{{dx}} = 2 + 0.15x.$$     The total cost function $$c\left( x \right),$$  is :
(It is given that $$c\left( 0 \right) = 100$$   )

A $$0.075{x^2} + 2x + 100$$
B $$0.15{x^2} + 3x + 30$$
C $${x^2} + 100.075x + 100$$
D None of these
Answer :   $$0.075{x^2} + 2x + 100$$

47. Solution of the differential equation $$\frac{{dx}}{{dy}} - \frac{{x\,\log x}}{{1 + \log \,x}} = \frac{{{e^y}}}{{1 + \log \,x}},{\text{ if }}y\left( 1 \right) = 0,{\text{ is :}}$$

A $${x^x} = {e^{y{e^y}}}$$
B $${e^y} = {x^{{e^y}}}$$
C $${x^x} = y{e^y}$$
D none of these
Answer :   $${x^x} = {e^{y{e^y}}}$$

48. The solution of the differential equation $$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - \,1}}y}}} \right)\frac{{dy}}{{dx}} = 0,$$       is-

A $$x{e^{2\,{{\tan }^{ - \,1}}y}} = {e^{{{\tan }^{ - \,1}}y}} + k$$
B $$\left( {x - 2} \right) = k{e^{2\,{{\tan }^{ - \,1}}y}}$$
C $$2x{e^{{{\tan }^{ - \,1}}y}} = {e^{2\,{{\tan }^{ - \,1}}y}}\, + k$$
D $$x{e^{{{\tan }^{ - \,1}}y}} = {\tan ^{ - 1}}y + k$$
Answer :   $$2x{e^{{{\tan }^{ - \,1}}y}} = {e^{2\,{{\tan }^{ - \,1}}y}}\, + k$$

49. The differential equation for the family of circle $${x^2} + {y^2} - 2ay = 0,$$    where $$a$$ is an arbitrary constant is -

A $$\left( {{x^2} + {y^2}} \right)y' = 2xy$$
B $$2\left( {{x^2} + {y^2}} \right)y' = xy$$
C $$\left( {{x^2} - {y^2}} \right)y' = 2xy$$
D $$2\left( {{x^2} - {y^2}} \right)y' = xy$$
Answer :   $$\left( {{x^2} - {y^2}} \right)y' = 2xy$$

50. What is the differential equation for $${y^2} = 4a\left( {x - a} \right)\,?$$

A $$yy' - 2xyy' + {y^2} = 0$$
B $$yy'\left( {yy' + 2x} \right) + {y^2} = 0$$
C $$yy'\left( {yy' - 2x} \right) + {y^2} = 0$$
D $$yy' - 2xyy' + y = 0$$
Answer :   $$yy'\left( {yy' - 2x} \right) + {y^2} = 0$$