Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
If $$y = {e^{4x}} + 2{e^{ - x}}$$ satisfies the relation $$\frac{{{d^3}y}}{{d{x^3}}} + A\frac{{dy}}{{dx}} + By = 0,$$ then values of $$A$$ and $$B$$ respectively are :
A
$$ - 13,\,14$$
B
$$ - 13,\,- 12$$
C
$$ - 13,\,12$$
D
$$12,\, - 13$$
Answer :
$$ - 13,\,- 12$$
Given $$y = {e^{4x}} + 2{e^{ - x}}$$
Differentiating we get
$$\eqalign{
& \frac{{dy}}{{dx}} = 4{e^{4x}} - 2{e^{ - x}} \cr
& \Rightarrow \frac{{{d^2}y}}{{d{x^2}}} = 16{e^{4x}} + 2{e^{ - x}} \cr
& \Rightarrow \frac{{{d^3}y}}{{d{x^3}}} = 64{e^{4x}} - 2{e^{ - x}} \cr} $$
Putting these values in $$\frac{{{d^3}y}}{{d{x^3}}} + A\frac{{dy}}{{dx}} + By = 0$$
We have
$$\eqalign{
& \left( {64 + 4A + B} \right){e^{4x}} + \left( { - 2 - 2A + 2B} \right){e^{ - x}} = 0 \cr
& \Rightarrow 64 + 4A + B = 0,\,\, - 2 - 2A + 2B = 0 \cr} $$
Solving these equations, we get $$A = - 13,\,\,B = - 12$$
52.
Let $$I$$ be the purchase value of an equipment and $$V\left( t \right)$$ be the value after it has been used for $$t$$ years. The value $$V\left( t \right)$$ depreciates at a rate given by differential equation $$\frac{{dV\left( t \right)}}{{dt}} = - k\left( {T - t} \right),$$ where $$k > 0$$ is a constant and $$T$$ is the total life in years of the equipment. Then the scrap value $$V\left( T \right)$$ of the equipment is-
A
$$I - \frac{{k{T^2}}}{2}$$
B
$$I - \frac{{k{{\left( {T - t} \right)}^2}}}{2}$$
C
$${e^{ - \,kT}}$$
D
$${T^2} - \frac{1}{k}$$
Answer :
$$I - \frac{{k{T^2}}}{2}$$
$$\eqalign{
& \frac{{dV\left( t \right)}}{{dt}} = - k\left( {T - t} \right)\,\,\,\,\, \Rightarrow \int {dVt} = - k\int {\left( {T - t} \right)dt} \cr
& V\left( t \right) = \frac{{k{{\left( {T - t} \right)}^2}}}{2} + c \cr
& V\left( 0 \right) = I\,\, \Rightarrow I = \frac{{K{T^2}}}{2} + C\,\,\, \Rightarrow C = I - \frac{{K{T^2}}}{2} \cr
& \therefore \,V\left( T \right) = 0 + C = I - \frac{{K{T^2}}}{2} \cr} $$
53.
What is the solution of the differential equation $$\sin \left( {\frac{{dy}}{{dx}}} \right) - a = 0?$$
(where $$c$$ is an arbitrary constant)
A
$$y = x\,{\sin ^{ - 1}}a + c$$
B
$$x = y\,{\sin ^{ - 1}}a + c$$
C
$$y = x + x\,{\sin ^{ - 1}}a + c$$
D
$$y = {\sin ^{ - 1}}a + c$$
Answer :
$$y = x\,{\sin ^{ - 1}}a + c$$
$$\eqalign{
& \sin \left( {\frac{{dy}}{{dx}}} \right) - a = 0 \cr
& \sin \left( {\frac{{dy}}{{dx}}} \right) = a \cr
& \Rightarrow \frac{{dy}}{{dx}} = {\sin ^{ - 1}}a\,;\,dy = {\sin ^{ - 1}}a\,dx \cr} $$
Now integrating both sides,
$$\eqalign{
& \int {dy} = \int {{{\sin }^{ - 1}}a\,dx} \cr
& y = x\,{\sin ^{ - 1}}a + c \cr} $$
54.
For the primitive integral equation $$ydx + {y^2}dy = xdy \,;$$ $$x \in R,\,y > 0,\,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y\left( { - 3} \right)$$ is-
A
$$3$$
B
$$2$$
C
$$1$$
D
$$5$$
Answer :
$$3$$
The given equation is
$$\eqalign{
& ydx + {y^2}dy = xdy;\,\,x \in R,\,y > 0,\,y\left( 1 \right) = 1\, \cr
& \Rightarrow \frac{{ydx - xdy}}{{{y^2}}} + dy = 0 \cr
& \Rightarrow \frac{d}{{dx}}\left( {\frac{x}{y}} \right) + dy = 0 \cr} $$
On integration, we get
$$\eqalign{
& \frac{x}{y} + y = C \cr
& y\left( 1 \right) = 1\,\,\,\, \Rightarrow 1 + 1 = C\,\, \Rightarrow C = 2 \cr
& \therefore \,\frac{x}{y} + y = 2 \cr} $$
Now to find $$y\left( { - 3} \right),$$ putting $$x=-3$$ in above equation, we get
$$\eqalign{
& - \frac{3}{y} + y = 2 \cr
& \Rightarrow {y^2} - 2y - 3 = 0 \cr
& \Rightarrow y = 3,\,\, - 1 \cr} $$
But given that $$y>0,$$
$$\therefore y = 3$$
55.
Solution of the differential equation $$\cos \,x\,dy = y\left( {\sin \,x - y} \right)dx,\,\,0 < x < \frac{\pi }{2}$$ is-
56.
The degree of the differential equation $$\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} = {x^2}$$ is :
A
one
B
two
C
half
D
four
Answer :
two
On removal of the radical, $$1 + {\left( {\frac{{dy}}{{dx}}} \right)^2} = {x^4}.$$ So, degree $$=2.$$
57.
Let $$y - y\left( x \right)$$ be the solution of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 4x,\,x \in \left( {0,\,\,\pi } \right).$$ If $$y\left( {\frac{\pi }{2}} \right) = 0,$$ then $$y\left( {\frac{\pi }{6}} \right)$$ is equal to :
A
$$\frac{{ - 8}}{{9\sqrt 3 }}{\pi ^2}$$
B
$$ - \frac{8}{9}{\pi ^2}$$
C
$$ - \frac{4}{9}{\pi ^2}$$
D
$$\frac{4}{{9\sqrt 3 }}{\pi ^2}$$
Answer :
$$ - \frac{8}{9}{\pi ^2}$$
Consider the given differential equation the
$$\eqalign{
& \sin \,xdy + y\,\cos \,xdx = 4xdx \cr
& \Rightarrow d\left( {y.\sin \,x} \right) = 4xdx \cr} $$
Integrate both sides
$$\eqalign{
& \Rightarrow y.\sin \,x = 2{x^2} + C\,.....(1) \cr
& \Rightarrow y\left( x \right) = \frac{{2{x^2}}}{{\sin \,x}} + c\,.....(2) \cr} $$
$$\because $$ equation (2) passes through $$\left( {\frac{\pi }{2},\,\,0} \right)$$
$$ \Rightarrow 0 = \frac{{{\pi ^2}}}{2} + C\,\,\, \Rightarrow C = - \frac{{{\pi ^2}}}{2}$$
Now, put the value of $$C$$ in (1)
Then, $$y\,\sin \,x = 2{x^2} - \frac{{{\pi ^2}}}{2}$$ is the solution $$\therefore y\left( {\frac{\pi }{6}} \right) = \left( {2.\frac{{{\pi ^2}}}{{36}} - \frac{{{\pi ^2}}}{2}} \right)2 = - \frac{{8{\pi ^2}}}{9}$$
58.
The order and degree of the differential equation of the family of circles touching the $$x$$-axis at the origin, are respectively :
A
$$1,\,1$$
B
$$1,\,2$$
C
$$2,\,1$$
D
$$2,\,2$$
Answer :
$$1,\,1$$
The equation of the family is
$$\eqalign{
& {\left( {x - c} \right)^2} + {y^2} = {c^2}{\text{ or }}{x^2} + {y^2} - 2cx = 0 \cr
& {\text{or }}\frac{{{x^2} + {y^2}}}{x} = 2c\,\,\,\,\,\,\,\,\, \Rightarrow \frac{{\left( {2x + 2y\frac{{dy}}{{dx}}} \right)x - \left( {{x^2} + {y^2}} \right).1}}{{{x^2}}} = 0 \cr} $$
So, degree $$=1$$ order $$=1$$
59.
The solution of the differential equation $$3{e^x}\tan \,y\,dx + \left( {1 - {e^x}} \right){\sec ^2}y\,dy = 0$$ is :
A
$${e^x}\tan \,y = C$$
B
$$C{e^x} = {\left( {1 - \tan \,y} \right)^3}$$
C
$$C\,\tan \,y = {\left( {1 - {e^x}} \right)^2}$$
60.
If $$y - y\left( x \right)$$ is the solution of the differential equation, $$x\frac{{dy}}{{dx}} + 2y = \,{x^2}$$ satisfying $$y\left( a \right) = 1,$$ then $$y\left( {\frac{1}{2}} \right)$$ is equal to: