Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$y = {e^{4x}} + 2{e^{ - x}}$$    satisfies the relation $$\frac{{{d^3}y}}{{d{x^3}}} + A\frac{{dy}}{{dx}} + By = 0,$$     then values of $$A$$ and $$B$$ respectively are :

A $$ - 13,\,14$$
B $$ - 13,\,- 12$$
C $$ - 13,\,12$$
D $$12,\, - 13$$
Answer :   $$ - 13,\,- 12$$

52. Let $$I$$ be the purchase value of an equipment and $$V\left( t \right)$$  be the value after it has been used for $$t$$ years. The value $$V\left( t \right)$$  depreciates at a rate given by differential equation $$\frac{{dV\left( t \right)}}{{dt}} = - k\left( {T - t} \right),$$     where $$k > 0$$  is a constant and $$T$$ is the total life in years of the equipment. Then the scrap value $$V\left( T \right)$$  of the equipment is-

A $$I - \frac{{k{T^2}}}{2}$$
B $$I - \frac{{k{{\left( {T - t} \right)}^2}}}{2}$$
C $${e^{ - \,kT}}$$
D $${T^2} - \frac{1}{k}$$
Answer :   $$I - \frac{{k{T^2}}}{2}$$

53. What is the solution of the differential equation $$\sin \left( {\frac{{dy}}{{dx}}} \right) - a = 0?$$
(where $$c$$ is an arbitrary constant)

A $$y = x\,{\sin ^{ - 1}}a + c$$
B $$x = y\,{\sin ^{ - 1}}a + c$$
C $$y = x + x\,{\sin ^{ - 1}}a + c$$
D $$y = {\sin ^{ - 1}}a + c$$
Answer :   $$y = x\,{\sin ^{ - 1}}a + c$$

54. For the primitive integral equation $$ydx + {y^2}dy = xdy \,;$$     $$x \in R,\,y > 0,\,y = y\left( x \right),\,y\left( 1 \right) = 1,$$       then $$y\left( { - 3} \right)$$  is-

A $$3$$
B $$2$$
C $$1$$
D $$5$$
Answer :   $$3$$

55. Solution of the differential equation $$\cos \,x\,dy = y\left( {\sin \,x - y} \right)dx,\,\,0 < x < \frac{\pi }{2}$$        is-

A $$y\,\sec \,x = \tan \,x + c$$
B $$y\,\tan \,x = \sec \,x + c$$
C $$\tan \,x = \left( {\sec \,x + c} \right)y$$
D $$\sec \,x = \left( {\tan \,x + c} \right)y$$
Answer :   $$\sec \,x = \left( {\tan \,x + c} \right)y$$

56. The degree of the differential equation $$\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} = {x^2}$$    is :

A one
B two
C half
D four
Answer :   two

57. Let $$y - y\left( x \right)$$   be the solution of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 4x,\,x \in \left( {0,\,\,\pi } \right).$$        If $$y\left( {\frac{\pi }{2}} \right) = 0,$$   then $$y\left( {\frac{\pi }{6}} \right)$$  is equal to :

A $$\frac{{ - 8}}{{9\sqrt 3 }}{\pi ^2}$$
B $$ - \frac{8}{9}{\pi ^2}$$
C $$ - \frac{4}{9}{\pi ^2}$$
D $$\frac{4}{{9\sqrt 3 }}{\pi ^2}$$
Answer :   $$ - \frac{8}{9}{\pi ^2}$$

58. The order and degree of the differential equation of the family of circles touching the $$x$$-axis at the origin, are respectively :

A $$1,\,1$$
B $$1,\,2$$
C $$2,\,1$$
D $$2,\,2$$
Answer :   $$1,\,1$$

59. The solution of the differential equation $$3{e^x}\tan \,y\,dx + \left( {1 - {e^x}} \right){\sec ^2}y\,dy = 0$$       is :

A $${e^x}\tan \,y = C$$
B $$C{e^x} = {\left( {1 - \tan \,y} \right)^3}$$
C $$C\,\tan \,y = {\left( {1 - {e^x}} \right)^2}$$
D $$\tan \,y = C{\left( {1 - {e^x}} \right)^3}$$
Answer :   $$\tan \,y = C{\left( {1 - {e^x}} \right)^3}$$

60. If $$y - y\left( x \right)$$  is the solution of the differential equation, $$x\frac{{dy}}{{dx}} + 2y = \,{x^2}$$    satisfying $$y\left( a \right) = 1,$$   then $$y\left( {\frac{1}{2}} \right)$$ is equal to:

A $$\frac{7}{{64}}$$
B $$\frac{1}{{4}}$$
C $$\frac{49}{{16}}$$
D $$\frac{13}{{16}}$$
Answer :   $$\frac{49}{{16}}$$