Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

61. The general solution of a differential equation is $$y = a{e^{bx + c}}$$   where $$a,\,b,\,c$$   are arbitrary constants. The order of the differential equation is :

A 3
B 2
C 1
D none of these
Answer :   2

62. The differential equation $$\frac{{dy}}{{dx}} = \frac{{\sqrt {1 - {y^2}} }}{y}$$    determines a family of circles with-

A variable radii and a fixed centre at $$\left( {0,\, 1} \right)$$
B variable radii and a fixed centre at $$\left( {0,\, - 1} \right)$$
C fixed radius 1 and variable centres along the $$x$$-axis.
D fixed radius 1 and variable centres along the $$y$$-axis.
Answer :   fixed radius 1 and variable centres along the $$x$$-axis.

63. The differential equation $$\frac{{{d^2}y}}{{d{x^2}}} + x.\frac{{dy}}{{dx}} + \sin \,y + {x^2} = 0$$       is of the following type :

A Linear
B Homogeneous
C Order two
D Degree two
Answer :   Order two

64. The solution of $$\frac{{dy}}{{dx}} = \left| x \right|$$   is :
(Where $$c$$ is an arbitrary constant)

A $$y = \frac{{x\left| x \right|}}{2} + c$$
B $$y = \frac{{\left| x \right|}}{2} + c$$
C $$y = \frac{{{x^2}}}{2} + c$$
D $$y = \frac{{{x^3}}}{2} + c$$
Answer :   $$y = \frac{{x\left| x \right|}}{2} + c$$

65. The curve satisfying the equation $$\frac{{dy}}{{dx}} = \frac{{y\left( {x + {y^3}} \right)}}{{x\left( {{y^3} - x} \right)}}$$     and passing through the point $$\left( {4,\, - 2} \right)$$: is :

A $${y^2} = - 2x$$
B $$y = - 2x$$
C $${y^3} = - 2x$$
D none of these
Answer :   $${y^3} = - 2x$$

66. If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A $$\frac{1}{3}$$
B $$\frac{2}{3}$$
C $$ - \frac{1}{3}$$
D $$1$$
Answer :   $$\frac{1}{3}$$

67. The solution of $$\frac{{dy}}{{dx}} = \sqrt {1 - {x^2} - {y^2} + {x^2}{y^2}} $$       is :
(where $$c$$ is an arbitrary constant)

A $${\sin ^{ - 1}}y = {\sin ^{ - 1}}x + c$$
B $$2\,{\sin ^{ - 1}}y = \sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$
C $$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$
D $$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\cos ^{ - 1}}x + c$$
Answer :   $$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$

68. What is the solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{y}{{\left( {x + 2{y^3}} \right)}}\,?$$

A $$y\left( {1 - xy} \right) = cx$$
B $${y^3} - x = cy$$
C $$x\left( {1 - xy} \right) = cy$$
D $$x\left( {1 + xy} \right) = cy$$
Answer :   $${y^3} - x = cy$$

69. Consider the following statements in respect of the differential equation $$\frac{{{d^2}y}}{{d{x^2}}} + \cos \left( {\frac{{dy}}{{dx}}} \right) = 0$$
1. The degree of the differential equation is not defined.
2. The order of the differential equation is 2.
Which of the above statements is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2

70. Solution of the differential equation $$x = 1 + xy\frac{{dy}}{{dx}} + \frac{{{x^2}{y^2}}}{{2!}}{\left( {\frac{{dy}}{{dx}}} \right)^2} + \frac{{{x^3}{y^3}}}{{3!}}{\left( {\frac{{dy}}{{dx}}} \right)^3} + ......$$

A $$y = \ln \left( x \right) + c$$
B $$y = {\left( {\ln \,x} \right)^2} + c$$
C $$y = \pm \ln \left( x \right) + c$$
D $$xy = {x^y} + c$$
Answer :   $$y = \pm \ln \left( x \right) + c$$