Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. If $$xdy = ydx + {y^2}dy,\,y > 0$$      and $$y\left( 1 \right) = 1,$$   then what is $$y\left( { - 3} \right)$$  equal to?

A $$3$$ only
B $$ - 1$$ only
C Both $$ - 1$$ and $$3$$
D Neither $$ - 1$$ nor $$3$$
Answer :   $$3$$ only

72. A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A $$y=2$$
B $$y=2x$$
C $$y=2x-4$$
D $$y = 2{x^2} - 4$$
Answer :   $$y=2x-4$$

73. The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{x + y}}{x}$$     satisfying the condition $$y\left( 1 \right) = 1$$  is-

A $$y = \ln \,x + x$$
B $$y = x\ln \,x + {x^2}$$
C $$y = x{e^{\left( {x\, - \,1} \right)}}$$
D $$y = x\ln \,x + x$$
Answer :   $$y = x\ln \,x + x$$

74. The differential equation of the family of curves $$y = {e^x}\left( {A\cos \,x + B\sin \,x} \right),$$      where $$A,\,B$$  are arbitrary constants, has the degree $$n$$ and order $$m.$$ Then :

A $$n=2,\,\,m=1$$
B $$n=2,\,\,m=2$$
C $$n=1,\,\,m=2$$
D $$n=1,\,\,m=1$$
Answer :   $$n=1,\,\,m=2$$

75. The differential equation which represents the three parameter family of circles $${x^2} + {y^2} + 2gx + 2fy + c = 0{\text{ is :}}$$

A $$y''' = \frac{{3y'y'{'^2}}}{{1 + y{'^2}}}$$
B $$y''' = \frac{{3y'{'^2}}}{{1 + y{'^2}}}$$
C $$y''' = \frac{{3y'}}{{1 + y{'^2}}}$$
D $$y''' = \frac{{3y'}}{{1 - y{'^2}}}$$
Answer :   $$y''' = \frac{{3y'y'{'^2}}}{{1 + y{'^2}}}$$

76. What is the solution of the differential equation $$\left( {x + y} \right)\left( {dx - dy} \right) = dx + dy\,?$$

A $$x + y + \ln \left( {x + y} \right) = c$$
B $$x - y + \ln \left( {x + y} \right) = c$$
C $$y - x + \ln \left( {x + y} \right) = c$$
D $$y - x - \ln \left( {x - y} \right) = c$$
Answer :   $$y - x + \ln \left( {x + y} \right) = c$$

77. The population of a country doubles in $$40$$  years. Assuming that the rate of increase is proportional to the number of inhabitants, the number of years in which it would treble itself is :

A $$80\,{\text{years}}$$
B $$80\frac{{\log \,2}}{{\log \,3}}\,{\text{years}}$$
C $$40\frac{{\log \,3}}{{\log \,2}}\,{\text{years}}$$
D $$40\,\log \,2\,\log \,3\,{\text{years}}$$
Answer :   $$40\frac{{\log \,3}}{{\log \,2}}\,{\text{years}}$$

78. Let the population of rabbits surviving at time $$t$$ be governed by the differential equation $$\frac{{dp\left( t \right)}}{{dx}} = \frac{1}{2}p\left( t \right) - 200.$$     If $$p\left( 0 \right) = 100,$$   then $${p\left( t \right)}$$ equals:

A $$600 - 500\,{e^{\frac{t}{2}}}$$
B $$400 - 300\,{e^{ - \,\frac{t}{2}}}$$
C $$400 - 300\,{e^{\frac{t}{2}}}$$
D $$300 - 200\,{e^{ - \,\frac{t}{2}}}$$
Answer :   $$400 - 300\,{e^{\frac{t}{2}}}$$

79. The degree and order of the differential equation of the family of all parabolas whose axis is $$x$$-axis, are respectively.

A $$2,\, 3$$
B $$2,\, 1$$
C $$1,\, 2$$
D $$3,\, 2$$
Answer :   $$1,\, 2$$

80. If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{1 + y}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1$$        then $$y\left( {\frac{\pi }{2}} \right)$$  equals :

A $$\frac{1}{3}$$
B $$\frac{2}{3}$$
C $$ - \frac{1}{3}$$
D $$1$$
Answer :   $$\frac{1}{3}$$