Differential Equations MCQ Questions & Answers in Calculus | Maths

Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

81. The gradient of the curve passing through $$\left( {4,\,0} \right)$$  is given by $$\frac{{dy}}{{dx}} - \frac{y}{x} + \frac{{5x}}{{\left( {x + 2} \right)\left( {x - 3} \right)}} = 0$$       if the point $$\left( {5,\,a} \right)$$  lies on the curve, then the value of $$a$$ is :

A $$\frac{{67}}{{12}}$$
B $$5\,\sin \,\frac{7}{{12}}$$
C $$5\,\log \,\frac{7}{{12}}$$
D none of these
Answer :   $$5\,\log \,\frac{7}{{12}}$$

82. Under which one of the following conditions does the solution of $$\frac{{dy}}{{dx}} = \frac{{ax + b}}{{cy + d}}$$    represent a parabola ?

A $$a = 0,\,c = 0$$
B $$a = 1,\,b = 2,\,c \ne 0$$
C $$a = 0,\,c \ne 0,\,b \ne 0$$
D $$a = 1,\,c = 1$$
Answer :   $$a = 0,\,c \ne 0,\,b \ne 0$$

83. The solutions of $$\left( {x + y + 1} \right)dy = dx$$     are :

A $$x + y + 2 = C{e^y}$$
B $$x + y + 4 = C\,\log \,y$$
C $$\log \left( {x + y + 2} \right) = Cy$$
D $$\log \left( {x + y + 2} \right) = C - y$$
Answer :   $$x + y + 2 = C{e^y}$$

84. If $$\phi \left( x \right)$$  is a differentiable function, then the solution of the differential equation $$dy + \left\{ {y\phi '\left( x \right) - \phi \left( x \right)\phi '\left( x \right)} \right\}dx = 0$$       is :

A $$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$
B $$y\phi \left( x \right) = {\left\{ {\phi \left( x \right)} \right\}^2} + c$$
C $$y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} + c$$
D none of these
Answer :   $$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$

85. $$y = 2\,\cos \,x + 3\,\sin \,x$$     satisfies which of the following differential equations ?
$$\eqalign{ & 1.\,\,\,\frac{{{d^2}y}}{{d{x^2}}} + y = 0 \cr & 2.\,\,\,{\left( {\frac{{dy}}{{dx}}} \right)^2} + \frac{{dy}}{{dx}} = 0 \cr} $$
Select the correct answer using the code given below.

A $$1$$ only
B $$2$$ only
C Both $$1$$ and $$2$$
D Neither $$1$$ nor $$2$$
Answer :   $$1$$ only

86. The solution of the equation $$x\int_0^x {y\left( t \right)dt = \left( {x + 1} \right)\int_0^x {ty\left( t \right)dt,\,x > 0} } {\text{ is :}}$$

A $$y = \frac{c}{{{x^3}}}{e^{{x^3}}}$$
B $$y = c{x^3}{e^{ - {x^3}}}$$
C $$\frac{c}{{{x^3}}}{e^{ - x}}$$
D none of these
Answer :   none of these

87. What is the degree of the differential equation $$k\frac{{{d^2}y}}{{d{x^2}}} = {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^3}} \right]^{\frac{3}{2}}},$$       where $$k$$ is a constant?

A 1
B 2
C 3
D 4
Answer :   2

88. Which of the following does not represent the orthogonal trajectory of the system of curves $${\left( {\frac{{dy}}{{dx}}} \right)^2} = \frac{a}{x}$$

A $$9a{\left( {y + c} \right)^2} = 4{x^3}$$
B $$y + c = \frac{{ - 2}}{{3\sqrt a }}{x^{\frac{3}{2}}}$$
C $$y + c = \frac{2}{{3\sqrt a }}{x^{\frac{3}{2}}}$$
D All are orthogonal trajectories
Answer :   All are orthogonal trajectories

89. The solution to the differential equation $$\frac{{dy}}{{dx}} = \frac{{yf'\left( x \right) - {y^2}}}{{f\left( x \right)}}$$     where $$f\left( x \right)$$  is a given function is :

A $$f\left( x \right) = y\left( {x + c} \right)$$
B $$f\left( x \right) = cxy$$
C $$f\left( x \right) = c\left( {x + y} \right)$$
D $$yf\left( x \right) = cx$$
Answer :   $$f\left( x \right) = y\left( {x + c} \right)$$

90. If $${x^2} + {y^2} = 1,$$   then

A $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Answer :   $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$